Cargando…
Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study
Timely detection of outbreaks is needed for poliovirus eradication, but gold standard detection in the Democratic Republic of the Congo takes 30 days (median). Direct molecular detection and nanopore sequencing (DDNS) of poliovirus in stool samples is a promising fast method. Here we report prospect...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465353/ https://www.ncbi.nlm.nih.gov/pubmed/37591995 http://dx.doi.org/10.1038/s41564-023-01453-4 |
_version_ | 1785098654222123008 |
---|---|
author | Shaw, Alexander G. Mampuela, Tresor Kabeya Lofiko, Emmanuel Lokilo Pratt, Catherine Troman, Catherine Bujaki, Erika O’Toole, Áine Akello, Joyce Odeke Aziza, Adrienne Amuri Lusamaki, Eddy Kinganda Makangara, Jean Claude Akonga, Marceline Lay, Yvonne Nsunda, Bibiche White, Bailey Jorgensen, David Pukuta, Elizabeth Riziki, Yogolelo Rankin, Kathleen E. Rambaut, Andrew Ahuka-Mundeke, Steve Muyembe, Jean-Jacques Martin, Javier Grassly, Nicholas C. Mbala-Kingebeni, Placide |
author_facet | Shaw, Alexander G. Mampuela, Tresor Kabeya Lofiko, Emmanuel Lokilo Pratt, Catherine Troman, Catherine Bujaki, Erika O’Toole, Áine Akello, Joyce Odeke Aziza, Adrienne Amuri Lusamaki, Eddy Kinganda Makangara, Jean Claude Akonga, Marceline Lay, Yvonne Nsunda, Bibiche White, Bailey Jorgensen, David Pukuta, Elizabeth Riziki, Yogolelo Rankin, Kathleen E. Rambaut, Andrew Ahuka-Mundeke, Steve Muyembe, Jean-Jacques Martin, Javier Grassly, Nicholas C. Mbala-Kingebeni, Placide |
author_sort | Shaw, Alexander G. |
collection | PubMed |
description | Timely detection of outbreaks is needed for poliovirus eradication, but gold standard detection in the Democratic Republic of the Congo takes 30 days (median). Direct molecular detection and nanopore sequencing (DDNS) of poliovirus in stool samples is a promising fast method. Here we report prospective testing of stool samples from suspected polio cases, and their contacts, in the Democratic Republic of the Congo between 10 August 2021 and 4 February 2022. DDNS detected polioviruses in 62/2,339 (2.7%) of samples, while gold standard combination of cell culture, quantitative PCR and Sanger sequencing detected polioviruses in 51/2,339 (2.2%) of the same samples. DDNS provided case confirmation in 7 days (median) in routine surveillance conditions. DDNS enabled confirmation of three serotype 2 circulating vaccine-derived poliovirus outbreaks 23 days (mean) earlier (range 6–30 days) than the gold standard method. The mean sequence similarity between sequences obtained by the two methods was 99.98%. Our data confirm the feasibility of implementing DDNS in a national poliovirus laboratory. |
format | Online Article Text |
id | pubmed-10465353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104653532023-08-31 Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study Shaw, Alexander G. Mampuela, Tresor Kabeya Lofiko, Emmanuel Lokilo Pratt, Catherine Troman, Catherine Bujaki, Erika O’Toole, Áine Akello, Joyce Odeke Aziza, Adrienne Amuri Lusamaki, Eddy Kinganda Makangara, Jean Claude Akonga, Marceline Lay, Yvonne Nsunda, Bibiche White, Bailey Jorgensen, David Pukuta, Elizabeth Riziki, Yogolelo Rankin, Kathleen E. Rambaut, Andrew Ahuka-Mundeke, Steve Muyembe, Jean-Jacques Martin, Javier Grassly, Nicholas C. Mbala-Kingebeni, Placide Nat Microbiol Article Timely detection of outbreaks is needed for poliovirus eradication, but gold standard detection in the Democratic Republic of the Congo takes 30 days (median). Direct molecular detection and nanopore sequencing (DDNS) of poliovirus in stool samples is a promising fast method. Here we report prospective testing of stool samples from suspected polio cases, and their contacts, in the Democratic Republic of the Congo between 10 August 2021 and 4 February 2022. DDNS detected polioviruses in 62/2,339 (2.7%) of samples, while gold standard combination of cell culture, quantitative PCR and Sanger sequencing detected polioviruses in 51/2,339 (2.2%) of the same samples. DDNS provided case confirmation in 7 days (median) in routine surveillance conditions. DDNS enabled confirmation of three serotype 2 circulating vaccine-derived poliovirus outbreaks 23 days (mean) earlier (range 6–30 days) than the gold standard method. The mean sequence similarity between sequences obtained by the two methods was 99.98%. Our data confirm the feasibility of implementing DDNS in a national poliovirus laboratory. Nature Publishing Group UK 2023-08-17 2023 /pmc/articles/PMC10465353/ /pubmed/37591995 http://dx.doi.org/10.1038/s41564-023-01453-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Shaw, Alexander G. Mampuela, Tresor Kabeya Lofiko, Emmanuel Lokilo Pratt, Catherine Troman, Catherine Bujaki, Erika O’Toole, Áine Akello, Joyce Odeke Aziza, Adrienne Amuri Lusamaki, Eddy Kinganda Makangara, Jean Claude Akonga, Marceline Lay, Yvonne Nsunda, Bibiche White, Bailey Jorgensen, David Pukuta, Elizabeth Riziki, Yogolelo Rankin, Kathleen E. Rambaut, Andrew Ahuka-Mundeke, Steve Muyembe, Jean-Jacques Martin, Javier Grassly, Nicholas C. Mbala-Kingebeni, Placide Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study |
title | Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study |
title_full | Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study |
title_fullStr | Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study |
title_full_unstemmed | Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study |
title_short | Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study |
title_sort | sensitive poliovirus detection using nested pcr and nanopore sequencing: a prospective validation study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465353/ https://www.ncbi.nlm.nih.gov/pubmed/37591995 http://dx.doi.org/10.1038/s41564-023-01453-4 |
work_keys_str_mv | AT shawalexanderg sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT mampuelatresorkabeya sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT lofikoemmanuellokilo sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT prattcatherine sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT tromancatherine sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT bujakierika sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT otooleaine sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT akellojoyceodeke sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT azizaadrienneamuri sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT lusamakieddykinganda sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT makangarajeanclaude sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT akongamarceline sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT layyvonne sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT nsundabibiche sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT whitebailey sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT jorgensendavid sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT pukutaelizabeth sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT rizikiyogolelo sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT rankinkathleene sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT rambautandrew sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT ahukamundekesteve sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT muyembejeanjacques sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT martinjavier sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT grasslynicholasc sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy AT mbalakingebeniplacide sensitivepoliovirusdetectionusingnestedpcrandnanoporesequencingaprospectivevalidationstudy |