Cargando…
Confinement inside MOFs Enables Guest-Modulated Spin Crossover of Otherwise Low-Spin Coordination Cages
[Image: see text] Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal–organic frameworks (MOFs) allows the spin state of the cages to be r...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466325/ https://www.ncbi.nlm.nih.gov/pubmed/37654592 http://dx.doi.org/10.1021/jacsau.3c00243 |
_version_ | 1785098857296691200 |
---|---|
author | Yang, Shuai-Liang Zhang, Xiang Wang, Qing Wu, Chao Liu, Haiming Jiang, Dongmei Lavendomme, Roy Zhang, Dawei Gao, En-Qing |
author_facet | Yang, Shuai-Liang Zhang, Xiang Wang, Qing Wu, Chao Liu, Haiming Jiang, Dongmei Lavendomme, Roy Zhang, Dawei Gao, En-Qing |
author_sort | Yang, Shuai-Liang |
collection | PubMed |
description | [Image: see text] Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal–organic frameworks (MOFs) allows the spin state of the cages to be regulated through multilevel host–guest interactions. In particular, the confined in situ self-assembly of an anionic Fe(II)(4)L(6) nanocage within the mesoporous cationic framework of MIL-101 leads to the ionic MOF with an unusual hierarchical host–guest structure. While the nanocage in solution and in the solid state has been known to be invariantly diamagnetic with low-spin Fe(II), Fe(II)(4)L(6)@MIL-101 exhibits spin-crossover (SCO) behavior in response to temperature and release/uptake of water guest within the MOF. The distinct color change concomitant with water-induced SCO enables the use of the material for highly selective colorimetric sensing of humidity. Moreover, the spin state and the SCO behavior can be modulated also by inclusion of a guest into the hydrophobic cavity of the confined cage. This is an essential demonstration of the phenomenon that the confinement within porous solids enables an SCO-inactive cage to show modulable SCO behaviors, opening perspectives for developing functional supramolecular materials through hierarchical host–guest structures. |
format | Online Article Text |
id | pubmed-10466325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-104663252023-08-31 Confinement inside MOFs Enables Guest-Modulated Spin Crossover of Otherwise Low-Spin Coordination Cages Yang, Shuai-Liang Zhang, Xiang Wang, Qing Wu, Chao Liu, Haiming Jiang, Dongmei Lavendomme, Roy Zhang, Dawei Gao, En-Qing JACS Au [Image: see text] Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal–organic frameworks (MOFs) allows the spin state of the cages to be regulated through multilevel host–guest interactions. In particular, the confined in situ self-assembly of an anionic Fe(II)(4)L(6) nanocage within the mesoporous cationic framework of MIL-101 leads to the ionic MOF with an unusual hierarchical host–guest structure. While the nanocage in solution and in the solid state has been known to be invariantly diamagnetic with low-spin Fe(II), Fe(II)(4)L(6)@MIL-101 exhibits spin-crossover (SCO) behavior in response to temperature and release/uptake of water guest within the MOF. The distinct color change concomitant with water-induced SCO enables the use of the material for highly selective colorimetric sensing of humidity. Moreover, the spin state and the SCO behavior can be modulated also by inclusion of a guest into the hydrophobic cavity of the confined cage. This is an essential demonstration of the phenomenon that the confinement within porous solids enables an SCO-inactive cage to show modulable SCO behaviors, opening perspectives for developing functional supramolecular materials through hierarchical host–guest structures. American Chemical Society 2023-07-28 /pmc/articles/PMC10466325/ /pubmed/37654592 http://dx.doi.org/10.1021/jacsau.3c00243 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Yang, Shuai-Liang Zhang, Xiang Wang, Qing Wu, Chao Liu, Haiming Jiang, Dongmei Lavendomme, Roy Zhang, Dawei Gao, En-Qing Confinement inside MOFs Enables Guest-Modulated Spin Crossover of Otherwise Low-Spin Coordination Cages |
title | Confinement inside
MOFs Enables Guest-Modulated Spin
Crossover of Otherwise Low-Spin Coordination Cages |
title_full | Confinement inside
MOFs Enables Guest-Modulated Spin
Crossover of Otherwise Low-Spin Coordination Cages |
title_fullStr | Confinement inside
MOFs Enables Guest-Modulated Spin
Crossover of Otherwise Low-Spin Coordination Cages |
title_full_unstemmed | Confinement inside
MOFs Enables Guest-Modulated Spin
Crossover of Otherwise Low-Spin Coordination Cages |
title_short | Confinement inside
MOFs Enables Guest-Modulated Spin
Crossover of Otherwise Low-Spin Coordination Cages |
title_sort | confinement inside
mofs enables guest-modulated spin
crossover of otherwise low-spin coordination cages |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466325/ https://www.ncbi.nlm.nih.gov/pubmed/37654592 http://dx.doi.org/10.1021/jacsau.3c00243 |
work_keys_str_mv | AT yangshuailiang confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT zhangxiang confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT wangqing confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT wuchao confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT liuhaiming confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT jiangdongmei confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT lavendommeroy confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT zhangdawei confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages AT gaoenqing confinementinsidemofsenablesguestmodulatedspincrossoverofotherwiselowspincoordinationcages |