Cargando…

The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia

Although children and adolescents with acute lymphoblastic leukaemia (ALL) have high survival rates, approximately 15-20% of patients relapse. Risk of relapse is routinely estimated at diagnosis by biological factors, including flow cytometry data. This high-dimensional data is typically manually as...

Descripción completa

Detalles Bibliográficos
Autores principales: Chulián, Salvador, Stolz, Bernadette J., Martínez-Rubio, Álvaro, Blázquez Goñi, Cristina, Rodríguez Gutiérrez, Juan F., Caballero Velázquez, Teresa, Molinos Quintana, Águeda, Ramírez Orellana, Manuel, Castillo Robleda, Ana, Fuster Soler, José Luis, Minguela Puras, Alfredo, Martínez Sánchez, María V., Rosa, María, Pérez-García, Víctor M., Byrne, Helen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468039/
https://www.ncbi.nlm.nih.gov/pubmed/37578973
http://dx.doi.org/10.1371/journal.pcbi.1011329
_version_ 1785099157692743680
author Chulián, Salvador
Stolz, Bernadette J.
Martínez-Rubio, Álvaro
Blázquez Goñi, Cristina
Rodríguez Gutiérrez, Juan F.
Caballero Velázquez, Teresa
Molinos Quintana, Águeda
Ramírez Orellana, Manuel
Castillo Robleda, Ana
Fuster Soler, José Luis
Minguela Puras, Alfredo
Martínez Sánchez, María V.
Rosa, María
Pérez-García, Víctor M.
Byrne, Helen M.
author_facet Chulián, Salvador
Stolz, Bernadette J.
Martínez-Rubio, Álvaro
Blázquez Goñi, Cristina
Rodríguez Gutiérrez, Juan F.
Caballero Velázquez, Teresa
Molinos Quintana, Águeda
Ramírez Orellana, Manuel
Castillo Robleda, Ana
Fuster Soler, José Luis
Minguela Puras, Alfredo
Martínez Sánchez, María V.
Rosa, María
Pérez-García, Víctor M.
Byrne, Helen M.
author_sort Chulián, Salvador
collection PubMed
description Although children and adolescents with acute lymphoblastic leukaemia (ALL) have high survival rates, approximately 15-20% of patients relapse. Risk of relapse is routinely estimated at diagnosis by biological factors, including flow cytometry data. This high-dimensional data is typically manually assessed by projecting it onto a subset of biomarkers. Cell density and “empty spaces” in 2D projections of the data, i.e. regions devoid of cells, are then used for qualitative assessment. Here, we use topological data analysis (TDA), which quantifies shapes, including empty spaces, in data, to analyse pre-treatment ALL datasets with known patient outcomes. We combine these fully unsupervised analyses with Machine Learning (ML) to identify significant shape characteristics and demonstrate that they accurately predict risk of relapse, particularly for patients previously classified as ‘low risk’. We independently confirm the predictive power of CD10, CD20, CD38, and CD45 as biomarkers for ALL diagnosis. Based on our analyses, we propose three increasingly detailed prognostic pipelines for analysing flow cytometry data from ALL patients depending on technical and technological availability: 1. Visual inspection of specific biological features in biparametric projections of the data; 2. Computation of quantitative topological descriptors of such projections; 3. A combined analysis, using TDA and ML, in the four-parameter space defined by CD10, CD20, CD38 and CD45. Our analyses readily extend to other haematological malignancies.
format Online
Article
Text
id pubmed-10468039
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-104680392023-08-31 The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia Chulián, Salvador Stolz, Bernadette J. Martínez-Rubio, Álvaro Blázquez Goñi, Cristina Rodríguez Gutiérrez, Juan F. Caballero Velázquez, Teresa Molinos Quintana, Águeda Ramírez Orellana, Manuel Castillo Robleda, Ana Fuster Soler, José Luis Minguela Puras, Alfredo Martínez Sánchez, María V. Rosa, María Pérez-García, Víctor M. Byrne, Helen M. PLoS Comput Biol Research Article Although children and adolescents with acute lymphoblastic leukaemia (ALL) have high survival rates, approximately 15-20% of patients relapse. Risk of relapse is routinely estimated at diagnosis by biological factors, including flow cytometry data. This high-dimensional data is typically manually assessed by projecting it onto a subset of biomarkers. Cell density and “empty spaces” in 2D projections of the data, i.e. regions devoid of cells, are then used for qualitative assessment. Here, we use topological data analysis (TDA), which quantifies shapes, including empty spaces, in data, to analyse pre-treatment ALL datasets with known patient outcomes. We combine these fully unsupervised analyses with Machine Learning (ML) to identify significant shape characteristics and demonstrate that they accurately predict risk of relapse, particularly for patients previously classified as ‘low risk’. We independently confirm the predictive power of CD10, CD20, CD38, and CD45 as biomarkers for ALL diagnosis. Based on our analyses, we propose three increasingly detailed prognostic pipelines for analysing flow cytometry data from ALL patients depending on technical and technological availability: 1. Visual inspection of specific biological features in biparametric projections of the data; 2. Computation of quantitative topological descriptors of such projections; 3. A combined analysis, using TDA and ML, in the four-parameter space defined by CD10, CD20, CD38 and CD45. Our analyses readily extend to other haematological malignancies. Public Library of Science 2023-08-14 /pmc/articles/PMC10468039/ /pubmed/37578973 http://dx.doi.org/10.1371/journal.pcbi.1011329 Text en © 2023 Chulián et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Chulián, Salvador
Stolz, Bernadette J.
Martínez-Rubio, Álvaro
Blázquez Goñi, Cristina
Rodríguez Gutiérrez, Juan F.
Caballero Velázquez, Teresa
Molinos Quintana, Águeda
Ramírez Orellana, Manuel
Castillo Robleda, Ana
Fuster Soler, José Luis
Minguela Puras, Alfredo
Martínez Sánchez, María V.
Rosa, María
Pérez-García, Víctor M.
Byrne, Helen M.
The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
title The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
title_full The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
title_fullStr The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
title_full_unstemmed The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
title_short The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
title_sort shape of cancer relapse: topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468039/
https://www.ncbi.nlm.nih.gov/pubmed/37578973
http://dx.doi.org/10.1371/journal.pcbi.1011329
work_keys_str_mv AT chuliansalvador theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT stolzbernadettej theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT martinezrubioalvaro theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT blazquezgonicristina theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT rodriguezgutierrezjuanf theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT caballerovelazquezteresa theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT molinosquintanaagueda theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT ramirezorellanamanuel theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT castillorobledaana theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT fustersolerjoseluis theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT minguelapurasalfredo theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT martinezsanchezmariav theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT rosamaria theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT perezgarciavictorm theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT byrnehelenm theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT chuliansalvador shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT stolzbernadettej shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT martinezrubioalvaro shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT blazquezgonicristina shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT rodriguezgutierrezjuanf shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT caballerovelazquezteresa shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT molinosquintanaagueda shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT ramirezorellanamanuel shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT castillorobledaana shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT fustersolerjoseluis shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT minguelapurasalfredo shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT martinezsanchezmariav shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT rosamaria shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT perezgarciavictorm shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia
AT byrnehelenm shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia