Cargando…
The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia
Although children and adolescents with acute lymphoblastic leukaemia (ALL) have high survival rates, approximately 15-20% of patients relapse. Risk of relapse is routinely estimated at diagnosis by biological factors, including flow cytometry data. This high-dimensional data is typically manually as...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468039/ https://www.ncbi.nlm.nih.gov/pubmed/37578973 http://dx.doi.org/10.1371/journal.pcbi.1011329 |
_version_ | 1785099157692743680 |
---|---|
author | Chulián, Salvador Stolz, Bernadette J. Martínez-Rubio, Álvaro Blázquez Goñi, Cristina Rodríguez Gutiérrez, Juan F. Caballero Velázquez, Teresa Molinos Quintana, Águeda Ramírez Orellana, Manuel Castillo Robleda, Ana Fuster Soler, José Luis Minguela Puras, Alfredo Martínez Sánchez, María V. Rosa, María Pérez-García, Víctor M. Byrne, Helen M. |
author_facet | Chulián, Salvador Stolz, Bernadette J. Martínez-Rubio, Álvaro Blázquez Goñi, Cristina Rodríguez Gutiérrez, Juan F. Caballero Velázquez, Teresa Molinos Quintana, Águeda Ramírez Orellana, Manuel Castillo Robleda, Ana Fuster Soler, José Luis Minguela Puras, Alfredo Martínez Sánchez, María V. Rosa, María Pérez-García, Víctor M. Byrne, Helen M. |
author_sort | Chulián, Salvador |
collection | PubMed |
description | Although children and adolescents with acute lymphoblastic leukaemia (ALL) have high survival rates, approximately 15-20% of patients relapse. Risk of relapse is routinely estimated at diagnosis by biological factors, including flow cytometry data. This high-dimensional data is typically manually assessed by projecting it onto a subset of biomarkers. Cell density and “empty spaces” in 2D projections of the data, i.e. regions devoid of cells, are then used for qualitative assessment. Here, we use topological data analysis (TDA), which quantifies shapes, including empty spaces, in data, to analyse pre-treatment ALL datasets with known patient outcomes. We combine these fully unsupervised analyses with Machine Learning (ML) to identify significant shape characteristics and demonstrate that they accurately predict risk of relapse, particularly for patients previously classified as ‘low risk’. We independently confirm the predictive power of CD10, CD20, CD38, and CD45 as biomarkers for ALL diagnosis. Based on our analyses, we propose three increasingly detailed prognostic pipelines for analysing flow cytometry data from ALL patients depending on technical and technological availability: 1. Visual inspection of specific biological features in biparametric projections of the data; 2. Computation of quantitative topological descriptors of such projections; 3. A combined analysis, using TDA and ML, in the four-parameter space defined by CD10, CD20, CD38 and CD45. Our analyses readily extend to other haematological malignancies. |
format | Online Article Text |
id | pubmed-10468039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-104680392023-08-31 The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia Chulián, Salvador Stolz, Bernadette J. Martínez-Rubio, Álvaro Blázquez Goñi, Cristina Rodríguez Gutiérrez, Juan F. Caballero Velázquez, Teresa Molinos Quintana, Águeda Ramírez Orellana, Manuel Castillo Robleda, Ana Fuster Soler, José Luis Minguela Puras, Alfredo Martínez Sánchez, María V. Rosa, María Pérez-García, Víctor M. Byrne, Helen M. PLoS Comput Biol Research Article Although children and adolescents with acute lymphoblastic leukaemia (ALL) have high survival rates, approximately 15-20% of patients relapse. Risk of relapse is routinely estimated at diagnosis by biological factors, including flow cytometry data. This high-dimensional data is typically manually assessed by projecting it onto a subset of biomarkers. Cell density and “empty spaces” in 2D projections of the data, i.e. regions devoid of cells, are then used for qualitative assessment. Here, we use topological data analysis (TDA), which quantifies shapes, including empty spaces, in data, to analyse pre-treatment ALL datasets with known patient outcomes. We combine these fully unsupervised analyses with Machine Learning (ML) to identify significant shape characteristics and demonstrate that they accurately predict risk of relapse, particularly for patients previously classified as ‘low risk’. We independently confirm the predictive power of CD10, CD20, CD38, and CD45 as biomarkers for ALL diagnosis. Based on our analyses, we propose three increasingly detailed prognostic pipelines for analysing flow cytometry data from ALL patients depending on technical and technological availability: 1. Visual inspection of specific biological features in biparametric projections of the data; 2. Computation of quantitative topological descriptors of such projections; 3. A combined analysis, using TDA and ML, in the four-parameter space defined by CD10, CD20, CD38 and CD45. Our analyses readily extend to other haematological malignancies. Public Library of Science 2023-08-14 /pmc/articles/PMC10468039/ /pubmed/37578973 http://dx.doi.org/10.1371/journal.pcbi.1011329 Text en © 2023 Chulián et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chulián, Salvador Stolz, Bernadette J. Martínez-Rubio, Álvaro Blázquez Goñi, Cristina Rodríguez Gutiérrez, Juan F. Caballero Velázquez, Teresa Molinos Quintana, Águeda Ramírez Orellana, Manuel Castillo Robleda, Ana Fuster Soler, José Luis Minguela Puras, Alfredo Martínez Sánchez, María V. Rosa, María Pérez-García, Víctor M. Byrne, Helen M. The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia |
title | The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia |
title_full | The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia |
title_fullStr | The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia |
title_full_unstemmed | The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia |
title_short | The shape of cancer relapse: Topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia |
title_sort | shape of cancer relapse: topological data analysis predicts recurrence in paediatric acute lymphoblastic leukaemia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468039/ https://www.ncbi.nlm.nih.gov/pubmed/37578973 http://dx.doi.org/10.1371/journal.pcbi.1011329 |
work_keys_str_mv | AT chuliansalvador theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT stolzbernadettej theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT martinezrubioalvaro theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT blazquezgonicristina theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT rodriguezgutierrezjuanf theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT caballerovelazquezteresa theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT molinosquintanaagueda theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT ramirezorellanamanuel theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT castillorobledaana theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT fustersolerjoseluis theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT minguelapurasalfredo theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT martinezsanchezmariav theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT rosamaria theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT perezgarciavictorm theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT byrnehelenm theshapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT chuliansalvador shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT stolzbernadettej shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT martinezrubioalvaro shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT blazquezgonicristina shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT rodriguezgutierrezjuanf shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT caballerovelazquezteresa shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT molinosquintanaagueda shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT ramirezorellanamanuel shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT castillorobledaana shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT fustersolerjoseluis shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT minguelapurasalfredo shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT martinezsanchezmariav shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT rosamaria shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT perezgarciavictorm shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia AT byrnehelenm shapeofcancerrelapsetopologicaldataanalysispredictsrecurrenceinpaediatricacutelymphoblasticleukaemia |