Cargando…
Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to ki...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468091/ https://www.ncbi.nlm.nih.gov/pubmed/37594999 http://dx.doi.org/10.1371/journal.ppat.1011581 |
_version_ | 1785099171215179776 |
---|---|
author | Lan, Jungang Wang, Yeqing Yue, Shusheng Xu, Duo Li, Yinan Peng, Xiangyu Hu, Jiao Ju, Enguo He, Shanping Li, Tingting |
author_facet | Lan, Jungang Wang, Yeqing Yue, Shusheng Xu, Duo Li, Yinan Peng, Xiangyu Hu, Jiao Ju, Enguo He, Shanping Li, Tingting |
author_sort | Lan, Jungang |
collection | PubMed |
description | Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the "shock and kill" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H(2)O(2)) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases. |
format | Online Article Text |
id | pubmed-10468091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-104680912023-08-31 Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma Lan, Jungang Wang, Yeqing Yue, Shusheng Xu, Duo Li, Yinan Peng, Xiangyu Hu, Jiao Ju, Enguo He, Shanping Li, Tingting PLoS Pathog Research Article Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the "shock and kill" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H(2)O(2)) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases. Public Library of Science 2023-08-18 /pmc/articles/PMC10468091/ /pubmed/37594999 http://dx.doi.org/10.1371/journal.ppat.1011581 Text en © 2023 Lan et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lan, Jungang Wang, Yeqing Yue, Shusheng Xu, Duo Li, Yinan Peng, Xiangyu Hu, Jiao Ju, Enguo He, Shanping Li, Tingting Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma |
title | Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma |
title_full | Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma |
title_fullStr | Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma |
title_full_unstemmed | Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma |
title_short | Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma |
title_sort | targeting foxo proteins induces lytic reactivation of kshv for treating herpesviral primary effusion lymphoma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468091/ https://www.ncbi.nlm.nih.gov/pubmed/37594999 http://dx.doi.org/10.1371/journal.ppat.1011581 |
work_keys_str_mv | AT lanjungang targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT wangyeqing targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT yueshusheng targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT xuduo targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT liyinan targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT pengxiangyu targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT hujiao targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT juenguo targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT heshanping targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma AT litingting targetingfoxoproteinsinduceslyticreactivationofkshvfortreatingherpesviralprimaryeffusionlymphoma |