Cargando…
Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells
BACKGROUND: Microglia-driven neuroinflammation has been shown to be involved in the entire process of Alzheimer’s disease (AD). Betaine is a natural product that exhibits anti-inflammatory activity; however, the exact underlying molecular mechanisms are poorly understood. OBJECTIVE: Our study focuse...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473109/ https://www.ncbi.nlm.nih.gov/pubmed/37334594 http://dx.doi.org/10.3233/JAD-230064 |
_version_ | 1785100209252990976 |
---|---|
author | Zhang, Yue Jia, Jianping |
author_facet | Zhang, Yue Jia, Jianping |
author_sort | Zhang, Yue |
collection | PubMed |
description | BACKGROUND: Microglia-driven neuroinflammation has been shown to be involved in the entire process of Alzheimer’s disease (AD). Betaine is a natural product that exhibits anti-inflammatory activity; however, the exact underlying molecular mechanisms are poorly understood. OBJECTIVE: Our study focused on determining the effect of betaine against amyloid-β(42) oligomer (AβO)-induced inflammation in microglial BV2 cells and investigating the underlying mechanism. METHODS: AβO was used to establish an in vitro AD model using BV2 cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to measure BV2 cell viability with different concentrations of AβO and betaine. Reverse transcription–polymerase chain reaction and enzyme-linked immunosorbent assays were used to determine the expression levels of inflammatory factors, such as interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor α (TNF-α). Western blotting was used to evaluate the activation of the NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome and nuclear transcription factor-κB p65 (NF-κB p65). Moreover, we used phorbol 12-myristate 13-acetate (PMA) to activate NF-κB in order to validate that betaine exerted anti-neuroinflammatory effects through regulation of the NF-κB/NLRP3 signaling pathway. RESULTS: We used 2 mM betaine to treat 5μM AβO-induced microglial inflammation. The administration of betaine effectively decreased the levels of IL-1β, IL-18, and TNF-α without affecting cell viability in BV2 microglial cells. CONCLUSION: Betaine inhibited AβO-induced neuroinflammation in microglia by inhibiting the activation of the NLRP3 inflammasome and NF-κB, which supports further evaluation of betaine as a potential effective modulator for AD. |
format | Online Article Text |
id | pubmed-10473109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104731092023-09-02 Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells Zhang, Yue Jia, Jianping J Alzheimers Dis Research Article BACKGROUND: Microglia-driven neuroinflammation has been shown to be involved in the entire process of Alzheimer’s disease (AD). Betaine is a natural product that exhibits anti-inflammatory activity; however, the exact underlying molecular mechanisms are poorly understood. OBJECTIVE: Our study focused on determining the effect of betaine against amyloid-β(42) oligomer (AβO)-induced inflammation in microglial BV2 cells and investigating the underlying mechanism. METHODS: AβO was used to establish an in vitro AD model using BV2 cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to measure BV2 cell viability with different concentrations of AβO and betaine. Reverse transcription–polymerase chain reaction and enzyme-linked immunosorbent assays were used to determine the expression levels of inflammatory factors, such as interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor α (TNF-α). Western blotting was used to evaluate the activation of the NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome and nuclear transcription factor-κB p65 (NF-κB p65). Moreover, we used phorbol 12-myristate 13-acetate (PMA) to activate NF-κB in order to validate that betaine exerted anti-neuroinflammatory effects through regulation of the NF-κB/NLRP3 signaling pathway. RESULTS: We used 2 mM betaine to treat 5μM AβO-induced microglial inflammation. The administration of betaine effectively decreased the levels of IL-1β, IL-18, and TNF-α without affecting cell viability in BV2 microglial cells. CONCLUSION: Betaine inhibited AβO-induced neuroinflammation in microglia by inhibiting the activation of the NLRP3 inflammasome and NF-κB, which supports further evaluation of betaine as a potential effective modulator for AD. IOS Press 2023-07-25 /pmc/articles/PMC10473109/ /pubmed/37334594 http://dx.doi.org/10.3233/JAD-230064 Text en © 2023 – The authors. Published by IOS Press https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhang, Yue Jia, Jianping Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells |
title | Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells |
title_full | Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells |
title_fullStr | Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells |
title_full_unstemmed | Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells |
title_short | Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells |
title_sort | betaine mitigates amyloid-β-associated neuroinflammation by suppressing the nlrp3 and nf-κb signaling pathways in microglial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473109/ https://www.ncbi.nlm.nih.gov/pubmed/37334594 http://dx.doi.org/10.3233/JAD-230064 |
work_keys_str_mv | AT zhangyue betainemitigatesamyloidbassociatedneuroinflammationbysuppressingthenlrp3andnfkbsignalingpathwaysinmicroglialcells AT jiajianping betainemitigatesamyloidbassociatedneuroinflammationbysuppressingthenlrp3andnfkbsignalingpathwaysinmicroglialcells |