Cargando…

Machine Learning Models to Interrogate Proteome-wide Cysteine Ligandabilities

Machine learning (ML) identification of covalently ligandable sites may significantly accelerate targeted covalent inhibitor discoveries and expand the druggable proteome space. Here we report the development of the tree-based models and convolutional neural networks trained on a newly curated datab...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ruibin, Clayton, Joseph, Shen, Mingzhe, Shen, Jana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473668/
https://www.ncbi.nlm.nih.gov/pubmed/37662346
http://dx.doi.org/10.1101/2023.08.17.553742