Cargando…

Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms

Caloric restriction (CR) extends organismal lifespan and health span by improving glucose homeostasis mechanisms. How CR affects organellar structure and function of pancreatic beta cells over the lifetime of the animal remains unknown. Here, we used single nucleus transcriptomics to show that CR in...

Descripción completa

Detalles Bibliográficos
Autores principales: dos Santos, Cristiane, Shrestha, Shristi, Cottam, Matthew, Perkins, Guy, Lev-Ram, Varda, Roy, Birbickram, Acree, Christopher, Kim, Keun-Young, Deerinck, Thomas, Cutler, Melanie, Dean, Danielle, Cartailler, Jean Philippe, MacDonald, Patrick E., Hetzer, Martin, Ellisman, Mark, e Drigo, Rafael Arrojo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473730/
https://www.ncbi.nlm.nih.gov/pubmed/37662336
http://dx.doi.org/10.1101/2023.08.23.554369
_version_ 1785100326741737472
author dos Santos, Cristiane
Shrestha, Shristi
Cottam, Matthew
Perkins, Guy
Lev-Ram, Varda
Roy, Birbickram
Acree, Christopher
Kim, Keun-Young
Deerinck, Thomas
Cutler, Melanie
Dean, Danielle
Cartailler, Jean Philippe
MacDonald, Patrick E.
Hetzer, Martin
Ellisman, Mark
e Drigo, Rafael Arrojo
author_facet dos Santos, Cristiane
Shrestha, Shristi
Cottam, Matthew
Perkins, Guy
Lev-Ram, Varda
Roy, Birbickram
Acree, Christopher
Kim, Keun-Young
Deerinck, Thomas
Cutler, Melanie
Dean, Danielle
Cartailler, Jean Philippe
MacDonald, Patrick E.
Hetzer, Martin
Ellisman, Mark
e Drigo, Rafael Arrojo
author_sort dos Santos, Cristiane
collection PubMed
description Caloric restriction (CR) extends organismal lifespan and health span by improving glucose homeostasis mechanisms. How CR affects organellar structure and function of pancreatic beta cells over the lifetime of the animal remains unknown. Here, we used single nucleus transcriptomics to show that CR increases the expression of genes for beta cell identity, protein processing, and organelle homeostasis. Gene regulatory network analysis link this transcriptional phenotype to transcription factors involved in beta cell identity (Mafa) and homeostasis (Atf6). Imaging metabolomics further demonstrates that CR beta cells are more energetically competent. In fact, high-resolution light and electron microscopy indicates that CR reduces beta cell mitophagy and increases mitochondria mass, increasing mitochondrial ATP generation. Finally, we show that long-term CR delays the onset of beta cell aging and senescence to promote longevity by reducing beta cell turnover. Therefore, CR could be a feasible approach to preserve compromised beta cells during aging and diabetes.
format Online
Article
Text
id pubmed-10473730
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104737302023-09-02 Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms dos Santos, Cristiane Shrestha, Shristi Cottam, Matthew Perkins, Guy Lev-Ram, Varda Roy, Birbickram Acree, Christopher Kim, Keun-Young Deerinck, Thomas Cutler, Melanie Dean, Danielle Cartailler, Jean Philippe MacDonald, Patrick E. Hetzer, Martin Ellisman, Mark e Drigo, Rafael Arrojo bioRxiv Article Caloric restriction (CR) extends organismal lifespan and health span by improving glucose homeostasis mechanisms. How CR affects organellar structure and function of pancreatic beta cells over the lifetime of the animal remains unknown. Here, we used single nucleus transcriptomics to show that CR increases the expression of genes for beta cell identity, protein processing, and organelle homeostasis. Gene regulatory network analysis link this transcriptional phenotype to transcription factors involved in beta cell identity (Mafa) and homeostasis (Atf6). Imaging metabolomics further demonstrates that CR beta cells are more energetically competent. In fact, high-resolution light and electron microscopy indicates that CR reduces beta cell mitophagy and increases mitochondria mass, increasing mitochondrial ATP generation. Finally, we show that long-term CR delays the onset of beta cell aging and senescence to promote longevity by reducing beta cell turnover. Therefore, CR could be a feasible approach to preserve compromised beta cells during aging and diabetes. Cold Spring Harbor Laboratory 2023-08-24 /pmc/articles/PMC10473730/ /pubmed/37662336 http://dx.doi.org/10.1101/2023.08.23.554369 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
dos Santos, Cristiane
Shrestha, Shristi
Cottam, Matthew
Perkins, Guy
Lev-Ram, Varda
Roy, Birbickram
Acree, Christopher
Kim, Keun-Young
Deerinck, Thomas
Cutler, Melanie
Dean, Danielle
Cartailler, Jean Philippe
MacDonald, Patrick E.
Hetzer, Martin
Ellisman, Mark
e Drigo, Rafael Arrojo
Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms
title Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms
title_full Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms
title_fullStr Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms
title_full_unstemmed Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms
title_short Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms
title_sort caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473730/
https://www.ncbi.nlm.nih.gov/pubmed/37662336
http://dx.doi.org/10.1101/2023.08.23.554369
work_keys_str_mv AT dossantoscristiane caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT shresthashristi caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT cottammatthew caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT perkinsguy caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT levramvarda caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT roybirbickram caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT acreechristopher caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT kimkeunyoung caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT deerinckthomas caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT cutlermelanie caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT deandanielle caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT cartaillerjeanphilippe caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT macdonaldpatricke caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT hetzermartin caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT ellismanmark caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms
AT edrigorafaelarrojo caloricrestrictionpromotesbetacelllongevityanddelaysagingandsenescencebyenhancingcellidentityandhomeostasismechanisms