Cargando…

A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification

Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted b...

Descripción completa

Detalles Bibliográficos
Autores principales: van Niekerk, David D., du Toit, Francois, Green, Kathleen, Palm, Danie, Snoep, Jacky L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474083/
https://www.ncbi.nlm.nih.gov/pubmed/37517694
http://dx.doi.org/10.1016/j.jbc.2023.105111
_version_ 1785100413522935808
author van Niekerk, David D.
du Toit, Francois
Green, Kathleen
Palm, Danie
Snoep, Jacky L.
author_facet van Niekerk, David D.
du Toit, Francois
Green, Kathleen
Palm, Danie
Snoep, Jacky L.
author_sort van Niekerk, David D.
collection PubMed
description Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite. The model simulations were in good agreement with experimental data, for which the measured parasitic volume was an important parameter. Upon further analysis of the model, we identified glucose transport as a drug target that would specifically affect infected red blood cells, which was confirmed experimentally with inhibitor titrations. This model can be a first step in constructing a whole-body model for glucose metabolism in malaria patients to evaluate the contribution of the parasite's metabolism to the disease state.
format Online
Article
Text
id pubmed-10474083
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-104740832023-09-03 A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification van Niekerk, David D. du Toit, Francois Green, Kathleen Palm, Danie Snoep, Jacky L. J Biol Chem Research Article Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite. The model simulations were in good agreement with experimental data, for which the measured parasitic volume was an important parameter. Upon further analysis of the model, we identified glucose transport as a drug target that would specifically affect infected red blood cells, which was confirmed experimentally with inhibitor titrations. This model can be a first step in constructing a whole-body model for glucose metabolism in malaria patients to evaluate the contribution of the parasite's metabolism to the disease state. American Society for Biochemistry and Molecular Biology 2023-07-29 /pmc/articles/PMC10474083/ /pubmed/37517694 http://dx.doi.org/10.1016/j.jbc.2023.105111 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
van Niekerk, David D.
du Toit, Francois
Green, Kathleen
Palm, Danie
Snoep, Jacky L.
A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification
title A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification
title_full A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification
title_fullStr A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification
title_full_unstemmed A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification
title_short A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification
title_sort detailed kinetic model of glycolysis in plasmodium falciparum-infected red blood cells for antimalarial drug target identification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474083/
https://www.ncbi.nlm.nih.gov/pubmed/37517694
http://dx.doi.org/10.1016/j.jbc.2023.105111
work_keys_str_mv AT vanniekerkdavidd adetailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT dutoitfrancois adetailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT greenkathleen adetailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT palmdanie adetailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT snoepjackyl adetailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT vanniekerkdavidd detailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT dutoitfrancois detailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT greenkathleen detailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT palmdanie detailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification
AT snoepjackyl detailedkineticmodelofglycolysisinplasmodiumfalciparuminfectedredbloodcellsforantimalarialdrugtargetidentification