Cargando…
Discovering the mechanism of action of drugs with a sparse explainable network
BACKGROUND: Although Deep Neural Networks (DDNs) have been successful in predicting the efficacy of cancer drugs, the lack of explainability in their decision-making process is a significant challenge. Previous research proposed mimicking the Gene Ontology structure to allow for interpretation of ea...
Autores principales: | Sada Del Real, Katyna, Rubio, Angel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474372/ https://www.ncbi.nlm.nih.gov/pubmed/37633093 http://dx.doi.org/10.1016/j.ebiom.2023.104767 |
Ejemplares similares
-
Precision oncology: a review to assess interpretability in several explainable methods
por: Gimeno, Marian, et al.
Publicado: (2023) -
Total network controllability analysis discovers explainable drugs for Covid-19 treatment
por: Wei, Xinru, et al.
Publicado: (2023) -
Total network controllability analysis discovers explainable drugs for Covid-19 treatment
por: Wei, Xinru, et al.
Publicado: (2023) -
Discovering sparse control strategies in neural activity
por: Lee, Edward D., et al.
Publicado: (2022) -
Clustering Sparse Data With Feature Correlation With Application to Discover Subtypes in Cancer
por: QIANG, JIPENG, et al.
Publicado: (2020)