Cargando…
Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural network architecture and the hyperparameter choice. So far, literature in the single...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475479/ https://www.ncbi.nlm.nih.gov/pubmed/37671239 http://dx.doi.org/10.1016/j.csbj.2023.07.041 |