Cargando…

Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data

Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural network architecture and the hyperparameter choice. So far, literature in the single...

Descripción completa

Detalles Bibliográficos
Autores principales: Xi, Nan Miles, Li, Jingyi Jessica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475479/
https://www.ncbi.nlm.nih.gov/pubmed/37671239
http://dx.doi.org/10.1016/j.csbj.2023.07.041
_version_ 1785100727478124544
author Xi, Nan Miles
Li, Jingyi Jessica
author_facet Xi, Nan Miles
Li, Jingyi Jessica
author_sort Xi, Nan Miles
collection PubMed
description Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural network architecture and the hyperparameter choice. So far, literature in the single-cell field lacks a formal discussion on how to design the neural network and choose the hyperparameters. Here, we conducted an empirical study to answer this question. Our study used many real and simulated scRNA-seq datasets to examine the impacts of the neural network architecture, the activation function, and the regularization strategy on imputation accuracy and downstream analyses. Our results show that (i) deeper and narrower autoencoders generally lead to better imputation performance; (ii) the sigmoid and tanh activation functions consistently outperform other commonly used functions including ReLU; (iii) regularization improves the accuracy of imputation and downstream cell clustering and DE gene analyses. Notably, our results differ from common practices in the computer vision field regarding the activation function and the regularization strategy. Overall, our study offers practical guidance on how to optimize the autoencoder design for scRNA-seq data imputation.
format Online
Article
Text
id pubmed-10475479
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-104754792023-09-05 Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data Xi, Nan Miles Li, Jingyi Jessica Comput Struct Biotechnol J Research Article Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural network architecture and the hyperparameter choice. So far, literature in the single-cell field lacks a formal discussion on how to design the neural network and choose the hyperparameters. Here, we conducted an empirical study to answer this question. Our study used many real and simulated scRNA-seq datasets to examine the impacts of the neural network architecture, the activation function, and the regularization strategy on imputation accuracy and downstream analyses. Our results show that (i) deeper and narrower autoencoders generally lead to better imputation performance; (ii) the sigmoid and tanh activation functions consistently outperform other commonly used functions including ReLU; (iii) regularization improves the accuracy of imputation and downstream cell clustering and DE gene analyses. Notably, our results differ from common practices in the computer vision field regarding the activation function and the regularization strategy. Overall, our study offers practical guidance on how to optimize the autoencoder design for scRNA-seq data imputation. Research Network of Computational and Structural Biotechnology 2023-08-04 /pmc/articles/PMC10475479/ /pubmed/37671239 http://dx.doi.org/10.1016/j.csbj.2023.07.041 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Xi, Nan Miles
Li, Jingyi Jessica
Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
title Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
title_full Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
title_fullStr Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
title_full_unstemmed Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
title_short Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
title_sort exploring the optimization of autoencoder design for imputing single-cell rna sequencing data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475479/
https://www.ncbi.nlm.nih.gov/pubmed/37671239
http://dx.doi.org/10.1016/j.csbj.2023.07.041
work_keys_str_mv AT xinanmiles exploringtheoptimizationofautoencoderdesignforimputingsinglecellrnasequencingdata
AT lijingyijessica exploringtheoptimizationofautoencoderdesignforimputingsinglecellrnasequencingdata