Cargando…
Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural network architecture and the hyperparameter choice. So far, literature in the single...
Autores principales: | Xi, Nan Miles, Li, Jingyi Jessica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475479/ https://www.ncbi.nlm.nih.gov/pubmed/37671239 http://dx.doi.org/10.1016/j.csbj.2023.07.041 |
Ejemplares similares
-
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data
por: Chi, Weilai, et al.
Publicado: (2020) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018) -
Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks
por: Rao, Jiahua, et al.
Publicado: (2021)