Cargando…

A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy

We present TopicFlow, a computational framework for flow cytometry data analysis of patient blood samples for the identification of functional and dynamic topics in circulating T cell population. This framework applies a Latent Dirichlet Allocation (LDA) model, adapting the concept of topic modeling...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Xiyu, Lee, Jasme, Adamow, Matthew, Maher, Colleen, Postow, Michael A., Callahan, Margaret K., Panageas, Katherine S., Shen, Ronglai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475788/
https://www.ncbi.nlm.nih.gov/pubmed/37671017
http://dx.doi.org/10.1016/j.crmeth.2023.100546
_version_ 1785100791938285568
author Peng, Xiyu
Lee, Jasme
Adamow, Matthew
Maher, Colleen
Postow, Michael A.
Callahan, Margaret K.
Panageas, Katherine S.
Shen, Ronglai
author_facet Peng, Xiyu
Lee, Jasme
Adamow, Matthew
Maher, Colleen
Postow, Michael A.
Callahan, Margaret K.
Panageas, Katherine S.
Shen, Ronglai
author_sort Peng, Xiyu
collection PubMed
description We present TopicFlow, a computational framework for flow cytometry data analysis of patient blood samples for the identification of functional and dynamic topics in circulating T cell population. This framework applies a Latent Dirichlet Allocation (LDA) model, adapting the concept of topic modeling in text mining to flow cytometry. To demonstrate the utility of our method, we conducted an analysis of ∼17 million T cells collected from 138 peripheral blood samples in 51 patients with melanoma undergoing treatment with immune checkpoint inhibitors (ICIs). Our study highlights three latent dynamic topics identified by LDA: a T cell exhaustion topic that independently recapitulates the previously identified LAG-3(+) immunotype associated with ICI resistance, a naive topic and its association with immune-related toxicity, and a T cell activation topic that emerges upon ICI treatment. Our approach can be broadly applied to mine high-parameter flow cytometry data for insights into mechanisms of treatment response and toxicity.
format Online
Article
Text
id pubmed-10475788
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104757882023-09-05 A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy Peng, Xiyu Lee, Jasme Adamow, Matthew Maher, Colleen Postow, Michael A. Callahan, Margaret K. Panageas, Katherine S. Shen, Ronglai Cell Rep Methods Article We present TopicFlow, a computational framework for flow cytometry data analysis of patient blood samples for the identification of functional and dynamic topics in circulating T cell population. This framework applies a Latent Dirichlet Allocation (LDA) model, adapting the concept of topic modeling in text mining to flow cytometry. To demonstrate the utility of our method, we conducted an analysis of ∼17 million T cells collected from 138 peripheral blood samples in 51 patients with melanoma undergoing treatment with immune checkpoint inhibitors (ICIs). Our study highlights three latent dynamic topics identified by LDA: a T cell exhaustion topic that independently recapitulates the previously identified LAG-3(+) immunotype associated with ICI resistance, a naive topic and its association with immune-related toxicity, and a T cell activation topic that emerges upon ICI treatment. Our approach can be broadly applied to mine high-parameter flow cytometry data for insights into mechanisms of treatment response and toxicity. Elsevier 2023-08-02 /pmc/articles/PMC10475788/ /pubmed/37671017 http://dx.doi.org/10.1016/j.crmeth.2023.100546 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Peng, Xiyu
Lee, Jasme
Adamow, Matthew
Maher, Colleen
Postow, Michael A.
Callahan, Margaret K.
Panageas, Katherine S.
Shen, Ronglai
A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy
title A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy
title_full A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy
title_fullStr A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy
title_full_unstemmed A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy
title_short A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy
title_sort topic modeling approach reveals the dynamic t cell composition of peripheral blood during cancer immunotherapy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475788/
https://www.ncbi.nlm.nih.gov/pubmed/37671017
http://dx.doi.org/10.1016/j.crmeth.2023.100546
work_keys_str_mv AT pengxiyu atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT leejasme atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT adamowmatthew atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT mahercolleen atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT postowmichaela atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT callahanmargaretk atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT panageaskatherines atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT shenronglai atopicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT pengxiyu topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT leejasme topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT adamowmatthew topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT mahercolleen topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT postowmichaela topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT callahanmargaretk topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT panageaskatherines topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy
AT shenronglai topicmodelingapproachrevealsthedynamictcellcompositionofperipheralbloodduringcancerimmunotherapy