Cargando…
Single-cell multi-omics topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures
The advent of single-cell multi-omics sequencing technology makes it possible for researchers to leverage multiple modalities for individual cells and explore cell heterogeneity. However, the high-dimensional, discrete, and sparse nature of the data make the downstream analysis particularly challeng...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475851/ https://www.ncbi.nlm.nih.gov/pubmed/37671028 http://dx.doi.org/10.1016/j.crmeth.2023.100563 |
Sumario: | The advent of single-cell multi-omics sequencing technology makes it possible for researchers to leverage multiple modalities for individual cells and explore cell heterogeneity. However, the high-dimensional, discrete, and sparse nature of the data make the downstream analysis particularly challenging. Here, we propose an interpretable deep learning method called moETM to perform integrative analysis of high-dimensional single-cell multimodal data. moETM integrates multiple omics data via a product-of-experts in the encoder and employs multiple linear decoders to learn the multi-omics signatures. moETM demonstrates superior performance compared with six state-of-the-art methods on seven publicly available datasets. By applying moETM to the scRNA + scATAC data, we identified sequence motifs corresponding to the transcription factors regulating immune gene signatures. Applying moETM to CITE-seq data from the COVID-19 patients revealed not only known immune cell-type-specific signatures but also composite multi-omics biomarkers of critical conditions due to COVID-19, thus providing insights from both biological and clinical perspectives. |
---|