Cargando…

In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V

Analog switching in ferroelectric devices promises neuromorphic computing with the highest energy efficiency if limited device scalability can be overcome. To contribute to a solution, one reports on the ferroelectric switching characteristics of sub‐5 nm thin Al(0.74)Sc(0.26)N films grown on Pt/Ti/...

Descripción completa

Detalles Bibliográficos
Autores principales: Schönweger, Georg, Wolff, Niklas, Islam, Md Redwanul, Gremmel, Maike, Petraru, Adrian, Kienle, Lorenz, Kohlstedt, Hermann, Fichtner, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477852/
https://www.ncbi.nlm.nih.gov/pubmed/37382398
http://dx.doi.org/10.1002/advs.202302296
_version_ 1785101223806894080
author Schönweger, Georg
Wolff, Niklas
Islam, Md Redwanul
Gremmel, Maike
Petraru, Adrian
Kienle, Lorenz
Kohlstedt, Hermann
Fichtner, Simon
author_facet Schönweger, Georg
Wolff, Niklas
Islam, Md Redwanul
Gremmel, Maike
Petraru, Adrian
Kienle, Lorenz
Kohlstedt, Hermann
Fichtner, Simon
author_sort Schönweger, Georg
collection PubMed
description Analog switching in ferroelectric devices promises neuromorphic computing with the highest energy efficiency if limited device scalability can be overcome. To contribute to a solution, one reports on the ferroelectric switching characteristics of sub‐5 nm thin Al(0.74)Sc(0.26)N films grown on Pt/Ti/SiO(2)/Si and epitaxial Pt/GaN/sapphire templates by sputter‐deposition. In this context, the study focuses on the following major achievements compared to previously available wurtzite‐type ferroelectrics: 1) Record low switching voltages down to 1 V are achieved, which is in a range that can be supplied by standard on‐chip voltage sources. 2) Compared to the previously investigated deposition of ultrathin Al(1−x)Sc(x)N films on epitaxial templates, a significantly larger coercive field (E ( c )) to breakdown field ratio is observed for Al(0.74)Sc(0.26)N films grown on silicon substrates, the technologically most relevant substrate‐type. 3) The formation of true ferroelectric domains in wurtzite‐type materials is for the first time demonstrated on the atomic scale by scanning transmission electron microscopy (STEM) investigations of a sub‐5 nm thin partially switched film. The direct observation of inversion domain boundaries (IDB) within single nm‐sized grains supports the theory of a gradual domain‐wall driven switching process in wurtzite‐type ferroelectrics. Ultimately, this should enable the analog switching necessary for mimicking neuromorphic concepts also in highly scaled devices.
format Online
Article
Text
id pubmed-10477852
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-104778522023-09-06 In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V Schönweger, Georg Wolff, Niklas Islam, Md Redwanul Gremmel, Maike Petraru, Adrian Kienle, Lorenz Kohlstedt, Hermann Fichtner, Simon Adv Sci (Weinh) Research Articles Analog switching in ferroelectric devices promises neuromorphic computing with the highest energy efficiency if limited device scalability can be overcome. To contribute to a solution, one reports on the ferroelectric switching characteristics of sub‐5 nm thin Al(0.74)Sc(0.26)N films grown on Pt/Ti/SiO(2)/Si and epitaxial Pt/GaN/sapphire templates by sputter‐deposition. In this context, the study focuses on the following major achievements compared to previously available wurtzite‐type ferroelectrics: 1) Record low switching voltages down to 1 V are achieved, which is in a range that can be supplied by standard on‐chip voltage sources. 2) Compared to the previously investigated deposition of ultrathin Al(1−x)Sc(x)N films on epitaxial templates, a significantly larger coercive field (E ( c )) to breakdown field ratio is observed for Al(0.74)Sc(0.26)N films grown on silicon substrates, the technologically most relevant substrate‐type. 3) The formation of true ferroelectric domains in wurtzite‐type materials is for the first time demonstrated on the atomic scale by scanning transmission electron microscopy (STEM) investigations of a sub‐5 nm thin partially switched film. The direct observation of inversion domain boundaries (IDB) within single nm‐sized grains supports the theory of a gradual domain‐wall driven switching process in wurtzite‐type ferroelectrics. Ultimately, this should enable the analog switching necessary for mimicking neuromorphic concepts also in highly scaled devices. John Wiley and Sons Inc. 2023-06-29 /pmc/articles/PMC10477852/ /pubmed/37382398 http://dx.doi.org/10.1002/advs.202302296 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Schönweger, Georg
Wolff, Niklas
Islam, Md Redwanul
Gremmel, Maike
Petraru, Adrian
Kienle, Lorenz
Kohlstedt, Hermann
Fichtner, Simon
In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V
title In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V
title_full In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V
title_fullStr In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V
title_full_unstemmed In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V
title_short In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al(0.74)Sc(0.26)N Films at 1 V
title_sort in‐grain ferroelectric switching in sub‐5 nm thin al(0.74)sc(0.26)n films at 1 v
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477852/
https://www.ncbi.nlm.nih.gov/pubmed/37382398
http://dx.doi.org/10.1002/advs.202302296
work_keys_str_mv AT schonwegergeorg ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v
AT wolffniklas ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v
AT islammdredwanul ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v
AT gremmelmaike ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v
AT petraruadrian ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v
AT kienlelorenz ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v
AT kohlstedthermann ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v
AT fichtnersimon ingrainferroelectricswitchinginsub5nmthinal074sc026nfilmsat1v