Cargando…
Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells
When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment‐induced anoikis and fluidic shear stress (SS)‐mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS‐specific mec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477893/ https://www.ncbi.nlm.nih.gov/pubmed/37395651 http://dx.doi.org/10.1002/advs.202301059 |
_version_ | 1785101233003954176 |
---|---|
author | Zhou, Muya Li, Koukou Luo, Kathy Qian |
author_facet | Zhou, Muya Li, Koukou Luo, Kathy Qian |
author_sort | Zhou, Muya |
collection | PubMed |
description | When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment‐induced anoikis and fluidic shear stress (SS)‐mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS‐specific mechanosensors without detachment impacts, a microfluidic circulatory system is used to generate arteriosus SS and compare transcriptome profiles of circulating lung cancer cells with suspended cells. Half of the cancer cells can survive SS damage and show higher invasion ability. Mesotrypsin (PRSS3), protease‐activated receptor 2 (PAR2), and the subunit of activating protein 1, Fos‐related antigen 1 (FOSL1), are upregulated by SS, and their high expression is responsible for promoting invasion and metastasis. SS triggers PRSS3 to cleave the N‐terminal inhibitory domain of PAR2 within 2 h. As a G protein‐coupled receptor, PAR2 further activates the Gα (i) protein to turn on the Src‐ERK/p38/JNK‐FRA1/cJUN axis to promote the expression of epithelial–mesenchymal transition markers, and also PRSS3, which facilitates metastasis. Enriched PRSS3, PAR2, and FOSL1 in human tumor samples and their correlations with worse outcomes reveal their clinical significance. PAR2 may serve as an SS‐specific mechanosensor cleavable by PRSS3 in circulation, which provides new insights for targeting metastasis‐initiating CTCs. |
format | Online Article Text |
id | pubmed-10477893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104778932023-09-06 Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells Zhou, Muya Li, Koukou Luo, Kathy Qian Adv Sci (Weinh) Research Articles When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment‐induced anoikis and fluidic shear stress (SS)‐mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS‐specific mechanosensors without detachment impacts, a microfluidic circulatory system is used to generate arteriosus SS and compare transcriptome profiles of circulating lung cancer cells with suspended cells. Half of the cancer cells can survive SS damage and show higher invasion ability. Mesotrypsin (PRSS3), protease‐activated receptor 2 (PAR2), and the subunit of activating protein 1, Fos‐related antigen 1 (FOSL1), are upregulated by SS, and their high expression is responsible for promoting invasion and metastasis. SS triggers PRSS3 to cleave the N‐terminal inhibitory domain of PAR2 within 2 h. As a G protein‐coupled receptor, PAR2 further activates the Gα (i) protein to turn on the Src‐ERK/p38/JNK‐FRA1/cJUN axis to promote the expression of epithelial–mesenchymal transition markers, and also PRSS3, which facilitates metastasis. Enriched PRSS3, PAR2, and FOSL1 in human tumor samples and their correlations with worse outcomes reveal their clinical significance. PAR2 may serve as an SS‐specific mechanosensor cleavable by PRSS3 in circulation, which provides new insights for targeting metastasis‐initiating CTCs. John Wiley and Sons Inc. 2023-07-03 /pmc/articles/PMC10477893/ /pubmed/37395651 http://dx.doi.org/10.1002/advs.202301059 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhou, Muya Li, Koukou Luo, Kathy Qian Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells |
title | Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells |
title_full | Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells |
title_fullStr | Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells |
title_full_unstemmed | Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells |
title_short | Shear Stress Drives the Cleavage Activation of Protease‐Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells |
title_sort | shear stress drives the cleavage activation of protease‐activated receptor 2 by prss3/mesotrypsin to promote invasion and metastasis of circulating lung cancer cells |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477893/ https://www.ncbi.nlm.nih.gov/pubmed/37395651 http://dx.doi.org/10.1002/advs.202301059 |
work_keys_str_mv | AT zhoumuya shearstressdrivesthecleavageactivationofproteaseactivatedreceptor2byprss3mesotrypsintopromoteinvasionandmetastasisofcirculatinglungcancercells AT likoukou shearstressdrivesthecleavageactivationofproteaseactivatedreceptor2byprss3mesotrypsintopromoteinvasionandmetastasisofcirculatinglungcancercells AT luokathyqian shearstressdrivesthecleavageactivationofproteaseactivatedreceptor2byprss3mesotrypsintopromoteinvasionandmetastasisofcirculatinglungcancercells |