Cargando…
Three-Dimensional Collision Avoidance Method for Robot-Assisted Minimally Invasive Surgery
In the robot-assisted minimally invasive surgery, if a collision occurs, the robot system program could be damaged, and normal tissues could be injured. To avoid collisions during surgery, a 3-dimensional collision avoidance method is proposed in this paper. The proposed method is predicated on the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10479965/ https://www.ncbi.nlm.nih.gov/pubmed/37675200 http://dx.doi.org/10.34133/cbsystems.0042 |
Sumario: | In the robot-assisted minimally invasive surgery, if a collision occurs, the robot system program could be damaged, and normal tissues could be injured. To avoid collisions during surgery, a 3-dimensional collision avoidance method is proposed in this paper. The proposed method is predicated on the design of 3 strategic vectors: the collision-with-instrument-avoidance (CI) vector, the collision-with-tissues-avoidance (CT) vector, and the constrained-control (CC) vector. The CI vector demarcates 3 specific directions to forestall collision among the surgical instruments. The CT vector, on the other hand, comprises 2 components tailored to prevent inadvertent contact between the robot-controlled instrument and nontarget tissues. Meanwhile, the CC vector is introduced to guide the endpoint of the robot-controlled instrument toward the desired position, ensuring precision in its movements, in alignment with the surgical goals. Simulation results verify the proposed collision avoidance method for robot-assisted minimally invasive surgery. The code and data are available at https://github.com/cynerelee/collision-avoidance. |
---|