Cargando…

mTORC2 regulates auditory hair cell structure and function

mTOR broadly controls cell growth, but little is known about the role of mTOR complex 2 (mTORC2) in the inner ear. To investigate the role of mTORC2 in sensory hair cells (HCs), we generated HC-specific Rictor knockout (HC-RicKO) mice. HC-RicKO mice exhibited early-onset, progressive, and profound h...

Descripción completa

Detalles Bibliográficos
Autores principales: Cortada, Maurizio, Levano, Soledad, Hall, Michael N., Bodmer, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484995/
https://www.ncbi.nlm.nih.gov/pubmed/37694145
http://dx.doi.org/10.1016/j.isci.2023.107687
Descripción
Sumario:mTOR broadly controls cell growth, but little is known about the role of mTOR complex 2 (mTORC2) in the inner ear. To investigate the role of mTORC2 in sensory hair cells (HCs), we generated HC-specific Rictor knockout (HC-RicKO) mice. HC-RicKO mice exhibited early-onset, progressive, and profound hearing loss. Increased DPOAE thresholds indicated outer HC dysfunction. HCs are lost, but this occurs after hearing loss. Ultrastructural analysis revealed stunted and absent stereocilia in outer HCs. In inner HCs, the number of synapses was significantly decreased and the remaining synapses displayed a disrupted actin cytoskeleton and disorganized Ca(2+) channels. Thus, the mTORC2 signaling pathway plays an important role in regulating auditory HC structure and function via regulation of the actin cytoskeleton. These results provide molecular insights on a central regulator of cochlear HCs and thus hearing.