Cargando…
Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics
Selecting the right tuning parameters for algorithms is a pravelent problem in machine learning that can significantly affect the performance of algorithms. Data-efficient optimization algorithms, such as Bayesian optimization, have been used to automate this process. During experiments on real-worl...
Autores principales: | Berkenkamp, Felix, Krause, Andreas, Schoellig, Angela P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485113/ https://www.ncbi.nlm.nih.gov/pubmed/37692295 http://dx.doi.org/10.1007/s10994-021-06019-1 |
Ejemplares similares
-
Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization
por: Kolar, Davor, et al.
Publicado: (2021) -
Automatic parameter selection for electron ptychography via Bayesian optimization
por: Cao, Michael C., et al.
Publicado: (2022) -
Bayesian optimization with unknown constraints in graphical skill models for compliant manipulation tasks using an industrial robot
por: Gabler, Volker, et al.
Publicado: (2022) -
Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization
por: Odili, Julius Beneoluchi, et al.
Publicado: (2017) -
qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
por: Häkkinen, Antti, et al.
Publicado: (2020)