Cargando…
MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features
This study aimed to develop a noninvasive Machine Learning (ML) model to identify clinically significant prostate cancer (csPCa) according to Gleason Score (GS) based on biparametric MRI (bpMRI) radiomic features and clinical information. Methods: This retrospective study included 86 adult Hispanic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486695/ https://www.ncbi.nlm.nih.gov/pubmed/37685317 http://dx.doi.org/10.3390/diagnostics13172779 |