Cargando…
MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features
This study aimed to develop a noninvasive Machine Learning (ML) model to identify clinically significant prostate cancer (csPCa) according to Gleason Score (GS) based on biparametric MRI (bpMRI) radiomic features and clinical information. Methods: This retrospective study included 86 adult Hispanic...
Autores principales: | Dominguez, Ignacio, Rios-Ibacache, Odette, Caprile, Paola, Gonzalez, Jose, San Francisco, Ignacio F., Besa, Cecilia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486695/ https://www.ncbi.nlm.nih.gov/pubmed/37685317 http://dx.doi.org/10.3390/diagnostics13172779 |
Ejemplares similares
-
Prediction of Prostate Cancer Disease Aggressiveness Using Bi-Parametric Mri Radiomics
por: Rodrigues, Ana, et al.
Publicado: (2021) -
Multimodality MRI-based radiomics for aggressiveness prediction in papillary thyroid cancer
por: Dai, Zedong, et al.
Publicado: (2022) -
A Radiomics-Based Machine Learning Perspective on the Parotid Gland as a Potential Surrogate Marker for HPV in Oropharyngeal Cancer
por: Prasse, Gordian, et al.
Publicado: (2023) -
Comparison between measured and calculated dynamic wedge dose distributions using the anisotropic analytic algorithm and pencil‐beam convolution
por: Caprile, Paola, et al.
Publicado: (2007) -
Advanced Imaging Analysis in Prostate MRI: Building a Radiomic Signature to Predict Tumor Aggressiveness
por: Damascelli, Anna, et al.
Publicado: (2021)