Cargando…

Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity

The acoustic waves of higher orders propagating in a layered structure consisting of a silicon plate coated with piezoelectric ZnO and/or AlN films were used for the development of a sensor with selective sensitivity to liquid viscosity η in the range of 1–1500 cP. In that range, this sensor possess...

Descripción completa

Detalles Bibliográficos
Autores principales: Smirnov, Andrey, Anisimkin, Vladimir, Shamsutdinova, Elizaveta, Signore, Maria-Assunta, Francioso, Luca, Zykov, Kirill, Baklaushev, Vladimir, Kuznetsova, Iren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489902/
https://www.ncbi.nlm.nih.gov/pubmed/37687786
http://dx.doi.org/10.3390/s23177329
_version_ 1785103716859248640
author Smirnov, Andrey
Anisimkin, Vladimir
Shamsutdinova, Elizaveta
Signore, Maria-Assunta
Francioso, Luca
Zykov, Kirill
Baklaushev, Vladimir
Kuznetsova, Iren
author_facet Smirnov, Andrey
Anisimkin, Vladimir
Shamsutdinova, Elizaveta
Signore, Maria-Assunta
Francioso, Luca
Zykov, Kirill
Baklaushev, Vladimir
Kuznetsova, Iren
author_sort Smirnov, Andrey
collection PubMed
description The acoustic waves of higher orders propagating in a layered structure consisting of a silicon plate coated with piezoelectric ZnO and/or AlN films were used for the development of a sensor with selective sensitivity to liquid viscosity η in the range of 1–1500 cP. In that range, this sensor possessed low sensitivity to liquid conductivity σ and temperature T in the ranges of 0–2 S/m and 0–55 °C, respectively. The amplitude responses insensitive to the temperature instead of the phase were used to provide the necessary selectivity. The sensor was based on a weak piezoactive acoustic wave of higher order. The volume of the probes sufficient for the measurements was about 100 μL. The characteristics of the sensors were optimized by varying the thicknesses of the structure layers, number of layers, wavelength, wave propagation direction, and the order of the acoustic waves. It was shown that in the case of the layered structure, it is possible to obtain practically the same selective sensitivity toward viscosity as for acoustic waves in pure ST, X quartz. The most appropriate waves for this purpose are quasi-longitudinal and Lamb waves of higher order with in-plane polarization. It was found that for various ranges of viscosity η = 1–20 cP, 20–100 cP, and 100–1500 cP, the maximum sensitivity of the appropriate wave is equal to 0.26 dB/cP, 0.087 dB/cP, and 0.013 dB/cP, respectively. The sensitivity of the waves under study toward the electric conductivity of the liquid is much less than the sensitivity to liquid viscosity. These two responses become comparable only for very small η < 2 cP. The waves investigated have shown no temperature responses in contact with air, but in the presence of liquid, they increase depending on liquid properties. The temperature dependence of liquid viscosity is measurable by the same sensors. The results obtained have shown the possibility of designing acoustic liquid viscosity sensors based on multilayered structures. The set of possible acoustic waves in layered structures possesses modified propagation characteristics (various polarization, phase velocities, electromechanical coupling coefficients, and attenuations). It allows choosing an optimal acoustic wave to detect liquid viscosity only.
format Online
Article
Text
id pubmed-10489902
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104899022023-09-09 Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity Smirnov, Andrey Anisimkin, Vladimir Shamsutdinova, Elizaveta Signore, Maria-Assunta Francioso, Luca Zykov, Kirill Baklaushev, Vladimir Kuznetsova, Iren Sensors (Basel) Article The acoustic waves of higher orders propagating in a layered structure consisting of a silicon plate coated with piezoelectric ZnO and/or AlN films were used for the development of a sensor with selective sensitivity to liquid viscosity η in the range of 1–1500 cP. In that range, this sensor possessed low sensitivity to liquid conductivity σ and temperature T in the ranges of 0–2 S/m and 0–55 °C, respectively. The amplitude responses insensitive to the temperature instead of the phase were used to provide the necessary selectivity. The sensor was based on a weak piezoactive acoustic wave of higher order. The volume of the probes sufficient for the measurements was about 100 μL. The characteristics of the sensors were optimized by varying the thicknesses of the structure layers, number of layers, wavelength, wave propagation direction, and the order of the acoustic waves. It was shown that in the case of the layered structure, it is possible to obtain practically the same selective sensitivity toward viscosity as for acoustic waves in pure ST, X quartz. The most appropriate waves for this purpose are quasi-longitudinal and Lamb waves of higher order with in-plane polarization. It was found that for various ranges of viscosity η = 1–20 cP, 20–100 cP, and 100–1500 cP, the maximum sensitivity of the appropriate wave is equal to 0.26 dB/cP, 0.087 dB/cP, and 0.013 dB/cP, respectively. The sensitivity of the waves under study toward the electric conductivity of the liquid is much less than the sensitivity to liquid viscosity. These two responses become comparable only for very small η < 2 cP. The waves investigated have shown no temperature responses in contact with air, but in the presence of liquid, they increase depending on liquid properties. The temperature dependence of liquid viscosity is measurable by the same sensors. The results obtained have shown the possibility of designing acoustic liquid viscosity sensors based on multilayered structures. The set of possible acoustic waves in layered structures possesses modified propagation characteristics (various polarization, phase velocities, electromechanical coupling coefficients, and attenuations). It allows choosing an optimal acoustic wave to detect liquid viscosity only. MDPI 2023-08-22 /pmc/articles/PMC10489902/ /pubmed/37687786 http://dx.doi.org/10.3390/s23177329 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Smirnov, Andrey
Anisimkin, Vladimir
Shamsutdinova, Elizaveta
Signore, Maria-Assunta
Francioso, Luca
Zykov, Kirill
Baklaushev, Vladimir
Kuznetsova, Iren
Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity
title Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity
title_full Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity
title_fullStr Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity
title_full_unstemmed Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity
title_short Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity
title_sort acoustic waves in piezoelectric layered structure for selective detection of liquid viscosity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489902/
https://www.ncbi.nlm.nih.gov/pubmed/37687786
http://dx.doi.org/10.3390/s23177329
work_keys_str_mv AT smirnovandrey acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity
AT anisimkinvladimir acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity
AT shamsutdinovaelizaveta acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity
AT signoremariaassunta acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity
AT franciosoluca acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity
AT zykovkirill acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity
AT baklaushevvladimir acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity
AT kuznetsovairen acousticwavesinpiezoelectriclayeredstructureforselectivedetectionofliquidviscosity