Cargando…
Artificial Synapse Emulated by Indium Tin Oxide/SiN/TaN Resistive Switching Device for Neuromorphic System
In this paper, we fabricate an ITO/SiN/TaN memristor device and analyze its electrical characteristics for a neuromorphic system. The device structure and chemical properties are investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. Uniform bipolar switching is ac...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490079/ https://www.ncbi.nlm.nih.gov/pubmed/37686985 http://dx.doi.org/10.3390/nano13172477 |
Sumario: | In this paper, we fabricate an ITO/SiN/TaN memristor device and analyze its electrical characteristics for a neuromorphic system. The device structure and chemical properties are investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. Uniform bipolar switching is achieved through DC sweep under a compliance current of 5 mA. Also, the analog reset phenomenon is observed by modulating the reset voltage for long-term memory. Additionally, short-term memory characteristics are obtained by controlling the strength of the pulse response. Finally, bio-inspired synaptic characteristics are emulated using Hebbian learning rules such as spike-rate-dependent plasticity (SRDP) and spike-timing-dependent plasticity (STDP). As a result, we believe that the coexistence of short-term and long-term memories in the ITO/SiN/TaN device can provide flexibility in device design in future neuromorphic applications. |
---|