Cargando…
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
The detection algorithm of the apple-picking robot contains a complex network structure and huge parameter volume, which seriously limits the inference speed. To enable automatic apple picking in complex unstructured environments based on embedded platforms, we propose a lightweight YOLOv5-CS model...
Autores principales: | Sun, Yu, Zhang, Dongwei, Guo, Xindong, Yang, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490290/ https://www.ncbi.nlm.nih.gov/pubmed/37687279 http://dx.doi.org/10.3390/plants12173032 |
Ejemplares similares
-
Lightweight forest smoke and fire detection algorithm based on improved YOLOv5
por: Yang, Jie, et al.
Publicado: (2023) -
A lightweight ship target detection model based on improved YOLOv5s algorithm
por: Zheng, Yuanzhou, et al.
Publicado: (2023) -
Lightweight aerial image object detection algorithm based on improved YOLOv5s
por: Deng, Lixia, et al.
Publicado: (2023) -
Lightweight Helmet Detection Algorithm Using an Improved YOLOv4 †
por: Chen, Junhua, et al.
Publicado: (2023) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023)