Cargando…
Holistic Spatio-Temporal Graph Attention for Trajectory Prediction in Vehicle–Pedestrian Interactions
Ensuring that intelligent vehicles do not cause fatal collisions remains a persistent challenge due to pedestrians’ unpredictable movements and behavior. The potential for risky situations or collisions arising from even minor misunderstandings in vehicle–pedestrian interactions is a cause for great...
Autores principales: | Alghodhaifi, Hesham, Lakshmanan, Sridhar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490541/ https://www.ncbi.nlm.nih.gov/pubmed/37687816 http://dx.doi.org/10.3390/s23177361 |
Ejemplares similares
-
EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
por: Kong, Wei, et al.
Publicado: (2021) -
Lighting a Path for Autonomous Vehicle Communication: The Effect of Light Projection on the Detection of Reversing Vehicles by Older Adult Pedestrians
por: Mason, Brian, et al.
Publicado: (2022) -
A microscopic simulation model for pedestrian-pedestrian and pedestrian-vehicle interactions at crosswalks
por: Liu, Manxia, et al.
Publicado: (2017) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
SGDAN—A Spatio-Temporal Graph Dual-Attention Neural Network for Quantified Flight Delay Prediction
por: Guo, Ziyu, et al.
Publicado: (2020)