Cargando…
Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain–Computer Interface Performance
(1) Background: in the field of motor-imagery brain–computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which le...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490741/ https://www.ncbi.nlm.nih.gov/pubmed/37687976 http://dx.doi.org/10.3390/s23177520 |