Cargando…
Gene count normalization in single-cell imaging-based spatially resolved transcriptomics
Recent advances in imaging-based spatially resolved transcriptomics (im-SRT) technologies now enable high-throughput profiling of targeted genes and their locations in fixed tissues. Normalization of gene expression data is often needed to account for technical factors that may confound underlying b...
Autores principales: | Atta, Lyla, Clifton, Kalen, Anant, Manjari, Fan, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491191/ https://www.ncbi.nlm.nih.gov/pubmed/37693542 http://dx.doi.org/10.1101/2023.08.30.555624 |
Ejemplares similares
-
Alignment of spatial transcriptomics data using diffeomorphic metric mapping
por: Clifton, Kalen, et al.
Publicado: (2023) -
Computational challenges and opportunities in spatially resolved transcriptomic data analysis
por: Atta, Lyla, et al.
Publicado: (2021) -
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
por: Miller, Brendan F., et al.
Publicado: (2022) -
Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
por: Miller, Brendan F., et al.
Publicado: (2021) -
SpatialDB: a database for spatially resolved transcriptomes
por: Fan, Zhen, et al.
Publicado: (2020)