Cargando…

Metabolic switch from fatty acid oxidation to glycolysis in knock‐in mouse model of Barth syndrome

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Chowdhury, Arpita, Boshnakovska, Angela, Aich, Abhishek, Methi, Aditi, Vergel Leon, Ana Maria, Silbern, Ivan, Lüchtenborg, Christian, Cyganek, Lukas, Prochazka, Jan, Sedlacek, Radislav, Lindovsky, Jiri, Wachs, Dominic, Nichtova, Zuzana, Zudova, Dagmar, Koubkova, Gizela, Fischer, André, Urlaub, Henning, Brügger, Britta, Katschinski, Dörthe M, Dudek, Jan, Rehling, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493589/
https://www.ncbi.nlm.nih.gov/pubmed/37533404
http://dx.doi.org/10.15252/emmm.202317399
Descripción
Sumario:Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZ(G197V) mice recapitulate disease‐specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid‐driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell‐derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZ(G197V). Treatment of mutant cells with AMPK activator reestablishes fatty acid‐driven OXPHOS and protects mice against cardiac dysfunction.