Cargando…

Technological, nutritional, and biological properties of apricot kernel protein hydrolyzates affected by various commercial proteases

The effect of enzymatic hydrolysis of apricot kernel protein with different proteases (Alcalase, pancreatin, pepsin, and trypsin) on the amino acid content, degree of hydrolysis (DH), antioxidant, and antibacterial characteristics of the resulting hydrolyzates was investigated in this study. The com...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarabandi, Khashayar, Mohammadi, Maryam, Akbarbaglu, Zahra, Ghorbani, Marjan, Najafi, Shahla, Safaeian Laein, Sara, Jafari, Seid Mahdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494656/
https://www.ncbi.nlm.nih.gov/pubmed/37701210
http://dx.doi.org/10.1002/fsn3.3467
Descripción
Sumario:The effect of enzymatic hydrolysis of apricot kernel protein with different proteases (Alcalase, pancreatin, pepsin, and trypsin) on the amino acid content, degree of hydrolysis (DH), antioxidant, and antibacterial characteristics of the resulting hydrolyzates was investigated in this study. The composition of amino acids (hydrophobic: ~35%; antioxidant: ~13%), EAA/TAA ratio (~34%), and PER index (~1.85) indicates the ability of the hydrolyzate as a source of nutrients and antioxidants with high digestibility. Enzymatic hydrolysis with increasing DH (from 3.1 to a maximum of 37.9%) led to improved solubility (especially in the isoelectric range) and changes in water‐ and oil‐holding capacity. The highest free radical scavenging activity of DPPH (83.3%), ABTS (88.1%), TEAC (2.38 mM), OH (72.5%), NO (65.7%), antioxidant activity in emulsion and formation of TBARS (0.36 mg MDA/L), total antioxidant (1.61), reducing power (1.17), chelation of iron (87.7%), copper (34.8%) ions, and inhibition of the growth of Escherichia coli (16.3 mm) and Bacillus cereus (15.4 mm) were affected by the type of enzymes (especially Alcalase). This research showed that apricot kernel hydrolyzate could serve as a nutrient source, emulsifier, stabilizer, antioxidant, and natural antibacterial agent in functional food formulations.