Cargando…
EP300 promotes ferroptosis via HSPA5 acetylation in pancreatic cancer
Ferroptosis is a form of regulated cell death characterized by oxidative injury-induced lipid peroxidation. However, the detailed protein post-translational modification regulatory mechanism of ferroptosis remains largely unknown. Here, we report that E1A binding protein P300 (EP300) acetyltransfera...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495396/ https://www.ncbi.nlm.nih.gov/pubmed/37696842 http://dx.doi.org/10.1038/s41598-023-42136-8 |
Sumario: | Ferroptosis is a form of regulated cell death characterized by oxidative injury-induced lipid peroxidation. However, the detailed protein post-translational modification regulatory mechanism of ferroptosis remains largely unknown. Here, we report that E1A binding protein P300 (EP300) acetyltransferase promotes ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells via the acetylation of heat shock protein family A (Hsp70) member 5 (HSPA5), also known as GRP78 or BIP) on the site of K353. Acetylated HSPA5 loses its ability to inhibit lipid peroxidation and subsequent ferroptotic cell death. Genetic or pharmacological inhibition of EP300-mediated HSPA5 acetylation on K353 increases PDAC cell resistance to ferroptosis. Moreover, histone deacetylase 6 (HDAC6) limits HSPA5 acetylation and subsequent ferroptosis. Collectively, these findings not only identify regulatory pathways for HSPA5 acetylation during ferroptosis, but also highlight promising strategies to increase ferroptosis sensitivity in PDAC cells. |
---|