Cargando…
ZINBMM: a general mixture model for simultaneous clustering and gene selection using single-cell transcriptomic data
Clustering is a critical component of single-cell RNA sequencing (scRNA-seq) data analysis and can help reveal cell types and infer cell lineages. Despite considerable successes, there are few methods tailored to investigating cluster-specific genes contributing to cell heterogeneity, which can prom...
Autores principales: | Li, Yang, Wu, Mingcong, Ma, Shuangge, Wu, Mengyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496184/ https://www.ncbi.nlm.nih.gov/pubmed/37697330 http://dx.doi.org/10.1186/s13059-023-03046-0 |
Ejemplares similares
-
Assisted clustering of gene expression data using ANCut
por: Teran Hidalgo, Sebastian J., et al.
Publicado: (2017) -
A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics
por: Lakkis, Justin, et al.
Publicado: (2021) -
scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data
por: Wang, Zongqin, et al.
Publicado: (2023) -
Simultaneous profiling of transcriptome and DNA methylome from a single cell
por: Hu, Youjin, et al.
Publicado: (2016) -
Simultaneous multifunctional transcriptome engineering by CRISPR RNA scaffold
por: Liu, Zukai, et al.
Publicado: (2023)