Cargando…

Production scheduling of prefabricated components considering delivery methods

To address the processing scheduling problem involving multiple molds, components, and floors, we propose the Genetic Grey Wolf Optimizer (GGA) as a means to optimize the production scheduling of components in a production line. This approach combines the Grey Wolf algorithm with the genetic algorit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shuqiang, Zhang, Xi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497527/
https://www.ncbi.nlm.nih.gov/pubmed/37700018
http://dx.doi.org/10.1038/s41598-023-42374-w
Descripción
Sumario:To address the processing scheduling problem involving multiple molds, components, and floors, we propose the Genetic Grey Wolf Optimizer (GGA) as a means to optimize the production scheduling of components in a production line. This approach combines the Grey Wolf algorithm with the genetic algorithm. Previous methods have overlooked the storage requirements arising from the delivery characteristics of prefabricated components, often resulting in unnecessary storage costs. Intelligent algorithms have been demonstrated to be effective in production scheduling, and thus, to enhance the efficiency of prefabricated component production scheduling, our study presents a model incorporating a production objective function. This model takes into account production resources and delivery characteristics constraints. Subsequently, we develop a hybrid algorithm, combining the grey wolf algorithm with the genetic algorithm, to search for the optimal solution with a minimal storage cost. We validate the model using a case study, and the experimental results demonstrate that GAGWO successfully identifies the best precast production schedule. Furthermore, the precast production plan, considering the delivery method, is found to be reasonable.