Cargando…
Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational me...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498806/ https://www.ncbi.nlm.nih.gov/pubmed/37698932 http://dx.doi.org/10.1080/19420862.2023.2256745 |
_version_ | 1785105596344696832 |
---|---|
author | Mock, Marissa Jacobitz, Alex W. Langmead, Christopher James Sudom, Athena Yoo, Daniel Humphreys, Sara C. Alday, Mai Alekseychyk, Larysa Angell, Nicolas Bi, Vivian Catterall, Hannah Chen, Chen-Chun Chou, Hui-Ting Conner, Kip P. Cook, Kevin D. Correia, Ana R. Dykstra, Andrew Ghimire-Rijal, Sudipa Graham, Kevin Grandsard, Peter Huh, Joon Hui, John O. Jain, Mani Jann, Victoria Jia, Lei Johnstone, Sheree Khanal, Neelam Kolvenbach, Carl Narhi, Linda Padaki, Rupa Pelegri-O’Day, Emma M. Qi, Wei Razinkov, Vladimir Rice, Austin J. Smith, Richard Spahr, Christopher Stevens, Jennitte Sun, Yax Thomas, Veena A. van Driesche, Sarah Vernon, Robert Wagner, Victoria Walker, Kenneth W. Wei, Yangjie Winters, Dwight Yang, Melissa Campuzano, Iain D. G. |
author_facet | Mock, Marissa Jacobitz, Alex W. Langmead, Christopher James Sudom, Athena Yoo, Daniel Humphreys, Sara C. Alday, Mai Alekseychyk, Larysa Angell, Nicolas Bi, Vivian Catterall, Hannah Chen, Chen-Chun Chou, Hui-Ting Conner, Kip P. Cook, Kevin D. Correia, Ana R. Dykstra, Andrew Ghimire-Rijal, Sudipa Graham, Kevin Grandsard, Peter Huh, Joon Hui, John O. Jain, Mani Jann, Victoria Jia, Lei Johnstone, Sheree Khanal, Neelam Kolvenbach, Carl Narhi, Linda Padaki, Rupa Pelegri-O’Day, Emma M. Qi, Wei Razinkov, Vladimir Rice, Austin J. Smith, Richard Spahr, Christopher Stevens, Jennitte Sun, Yax Thomas, Veena A. van Driesche, Sarah Vernon, Robert Wagner, Victoria Walker, Kenneth W. Wei, Yangjie Winters, Dwight Yang, Melissa Campuzano, Iain D. G. |
author_sort | Mock, Marissa |
collection | PubMed |
description | Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration–time curve (AUC(0–672 h)) in normal mouse is above or below a threshold of 3.9 × 10(6) h x ng/mL. |
format | Online Article Text |
id | pubmed-10498806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-104988062023-09-14 Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies Mock, Marissa Jacobitz, Alex W. Langmead, Christopher James Sudom, Athena Yoo, Daniel Humphreys, Sara C. Alday, Mai Alekseychyk, Larysa Angell, Nicolas Bi, Vivian Catterall, Hannah Chen, Chen-Chun Chou, Hui-Ting Conner, Kip P. Cook, Kevin D. Correia, Ana R. Dykstra, Andrew Ghimire-Rijal, Sudipa Graham, Kevin Grandsard, Peter Huh, Joon Hui, John O. Jain, Mani Jann, Victoria Jia, Lei Johnstone, Sheree Khanal, Neelam Kolvenbach, Carl Narhi, Linda Padaki, Rupa Pelegri-O’Day, Emma M. Qi, Wei Razinkov, Vladimir Rice, Austin J. Smith, Richard Spahr, Christopher Stevens, Jennitte Sun, Yax Thomas, Veena A. van Driesche, Sarah Vernon, Robert Wagner, Victoria Walker, Kenneth W. Wei, Yangjie Winters, Dwight Yang, Melissa Campuzano, Iain D. G. MAbs Report Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration–time curve (AUC(0–672 h)) in normal mouse is above or below a threshold of 3.9 × 10(6) h x ng/mL. Taylor & Francis 2023-09-12 /pmc/articles/PMC10498806/ /pubmed/37698932 http://dx.doi.org/10.1080/19420862.2023.2256745 Text en © 2023 Amgen, Inc. Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
spellingShingle | Report Mock, Marissa Jacobitz, Alex W. Langmead, Christopher James Sudom, Athena Yoo, Daniel Humphreys, Sara C. Alday, Mai Alekseychyk, Larysa Angell, Nicolas Bi, Vivian Catterall, Hannah Chen, Chen-Chun Chou, Hui-Ting Conner, Kip P. Cook, Kevin D. Correia, Ana R. Dykstra, Andrew Ghimire-Rijal, Sudipa Graham, Kevin Grandsard, Peter Huh, Joon Hui, John O. Jain, Mani Jann, Victoria Jia, Lei Johnstone, Sheree Khanal, Neelam Kolvenbach, Carl Narhi, Linda Padaki, Rupa Pelegri-O’Day, Emma M. Qi, Wei Razinkov, Vladimir Rice, Austin J. Smith, Richard Spahr, Christopher Stevens, Jennitte Sun, Yax Thomas, Veena A. van Driesche, Sarah Vernon, Robert Wagner, Victoria Walker, Kenneth W. Wei, Yangjie Winters, Dwight Yang, Melissa Campuzano, Iain D. G. Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies |
title | Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies |
title_full | Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies |
title_fullStr | Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies |
title_full_unstemmed | Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies |
title_short | Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies |
title_sort | development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498806/ https://www.ncbi.nlm.nih.gov/pubmed/37698932 http://dx.doi.org/10.1080/19420862.2023.2256745 |
work_keys_str_mv | AT mockmarissa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT jacobitzalexw developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT langmeadchristopherjames developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT sudomathena developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT yoodaniel developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT humphreyssarac developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT aldaymai developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT alekseychyklarysa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT angellnicolas developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT bivivian developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT catterallhannah developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT chenchenchun developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT chouhuiting developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT connerkipp developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT cookkevind developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT correiaanar developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT dykstraandrew developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT ghimirerijalsudipa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT grahamkevin developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT grandsardpeter developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT huhjoon developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT huijohno developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT jainmani developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT jannvictoria developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT jialei developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT johnstonesheree developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT khanalneelam developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT kolvenbachcarl developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT narhilinda developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT padakirupa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT pelegriodayemmam developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT qiwei developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT razinkovvladimir developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT riceaustinj developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT smithrichard developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT spahrchristopher developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT stevensjennitte developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT sunyax developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT thomasveenaa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT vandrieschesarah developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT vernonrobert developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT wagnervictoria developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT walkerkennethw developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT weiyangjie developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT wintersdwight developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT yangmelissa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies AT campuzanoiaindg developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies |