Cargando…

Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies

Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational me...

Descripción completa

Detalles Bibliográficos
Autores principales: Mock, Marissa, Jacobitz, Alex W., Langmead, Christopher James, Sudom, Athena, Yoo, Daniel, Humphreys, Sara C., Alday, Mai, Alekseychyk, Larysa, Angell, Nicolas, Bi, Vivian, Catterall, Hannah, Chen, Chen-Chun, Chou, Hui-Ting, Conner, Kip P., Cook, Kevin D., Correia, Ana R., Dykstra, Andrew, Ghimire-Rijal, Sudipa, Graham, Kevin, Grandsard, Peter, Huh, Joon, Hui, John O., Jain, Mani, Jann, Victoria, Jia, Lei, Johnstone, Sheree, Khanal, Neelam, Kolvenbach, Carl, Narhi, Linda, Padaki, Rupa, Pelegri-O’Day, Emma M., Qi, Wei, Razinkov, Vladimir, Rice, Austin J., Smith, Richard, Spahr, Christopher, Stevens, Jennitte, Sun, Yax, Thomas, Veena A., van Driesche, Sarah, Vernon, Robert, Wagner, Victoria, Walker, Kenneth W., Wei, Yangjie, Winters, Dwight, Yang, Melissa, Campuzano, Iain D. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498806/
https://www.ncbi.nlm.nih.gov/pubmed/37698932
http://dx.doi.org/10.1080/19420862.2023.2256745
_version_ 1785105596344696832
author Mock, Marissa
Jacobitz, Alex W.
Langmead, Christopher James
Sudom, Athena
Yoo, Daniel
Humphreys, Sara C.
Alday, Mai
Alekseychyk, Larysa
Angell, Nicolas
Bi, Vivian
Catterall, Hannah
Chen, Chen-Chun
Chou, Hui-Ting
Conner, Kip P.
Cook, Kevin D.
Correia, Ana R.
Dykstra, Andrew
Ghimire-Rijal, Sudipa
Graham, Kevin
Grandsard, Peter
Huh, Joon
Hui, John O.
Jain, Mani
Jann, Victoria
Jia, Lei
Johnstone, Sheree
Khanal, Neelam
Kolvenbach, Carl
Narhi, Linda
Padaki, Rupa
Pelegri-O’Day, Emma M.
Qi, Wei
Razinkov, Vladimir
Rice, Austin J.
Smith, Richard
Spahr, Christopher
Stevens, Jennitte
Sun, Yax
Thomas, Veena A.
van Driesche, Sarah
Vernon, Robert
Wagner, Victoria
Walker, Kenneth W.
Wei, Yangjie
Winters, Dwight
Yang, Melissa
Campuzano, Iain D. G.
author_facet Mock, Marissa
Jacobitz, Alex W.
Langmead, Christopher James
Sudom, Athena
Yoo, Daniel
Humphreys, Sara C.
Alday, Mai
Alekseychyk, Larysa
Angell, Nicolas
Bi, Vivian
Catterall, Hannah
Chen, Chen-Chun
Chou, Hui-Ting
Conner, Kip P.
Cook, Kevin D.
Correia, Ana R.
Dykstra, Andrew
Ghimire-Rijal, Sudipa
Graham, Kevin
Grandsard, Peter
Huh, Joon
Hui, John O.
Jain, Mani
Jann, Victoria
Jia, Lei
Johnstone, Sheree
Khanal, Neelam
Kolvenbach, Carl
Narhi, Linda
Padaki, Rupa
Pelegri-O’Day, Emma M.
Qi, Wei
Razinkov, Vladimir
Rice, Austin J.
Smith, Richard
Spahr, Christopher
Stevens, Jennitte
Sun, Yax
Thomas, Veena A.
van Driesche, Sarah
Vernon, Robert
Wagner, Victoria
Walker, Kenneth W.
Wei, Yangjie
Winters, Dwight
Yang, Melissa
Campuzano, Iain D. G.
author_sort Mock, Marissa
collection PubMed
description Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration–time curve (AUC(0–672 h)) in normal mouse is above or below a threshold of 3.9 × 10(6) h x ng/mL.
format Online
Article
Text
id pubmed-10498806
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-104988062023-09-14 Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies Mock, Marissa Jacobitz, Alex W. Langmead, Christopher James Sudom, Athena Yoo, Daniel Humphreys, Sara C. Alday, Mai Alekseychyk, Larysa Angell, Nicolas Bi, Vivian Catterall, Hannah Chen, Chen-Chun Chou, Hui-Ting Conner, Kip P. Cook, Kevin D. Correia, Ana R. Dykstra, Andrew Ghimire-Rijal, Sudipa Graham, Kevin Grandsard, Peter Huh, Joon Hui, John O. Jain, Mani Jann, Victoria Jia, Lei Johnstone, Sheree Khanal, Neelam Kolvenbach, Carl Narhi, Linda Padaki, Rupa Pelegri-O’Day, Emma M. Qi, Wei Razinkov, Vladimir Rice, Austin J. Smith, Richard Spahr, Christopher Stevens, Jennitte Sun, Yax Thomas, Veena A. van Driesche, Sarah Vernon, Robert Wagner, Victoria Walker, Kenneth W. Wei, Yangjie Winters, Dwight Yang, Melissa Campuzano, Iain D. G. MAbs Report Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration–time curve (AUC(0–672 h)) in normal mouse is above or below a threshold of 3.9 × 10(6) h x ng/mL. Taylor & Francis 2023-09-12 /pmc/articles/PMC10498806/ /pubmed/37698932 http://dx.doi.org/10.1080/19420862.2023.2256745 Text en © 2023 Amgen, Inc. Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
spellingShingle Report
Mock, Marissa
Jacobitz, Alex W.
Langmead, Christopher James
Sudom, Athena
Yoo, Daniel
Humphreys, Sara C.
Alday, Mai
Alekseychyk, Larysa
Angell, Nicolas
Bi, Vivian
Catterall, Hannah
Chen, Chen-Chun
Chou, Hui-Ting
Conner, Kip P.
Cook, Kevin D.
Correia, Ana R.
Dykstra, Andrew
Ghimire-Rijal, Sudipa
Graham, Kevin
Grandsard, Peter
Huh, Joon
Hui, John O.
Jain, Mani
Jann, Victoria
Jia, Lei
Johnstone, Sheree
Khanal, Neelam
Kolvenbach, Carl
Narhi, Linda
Padaki, Rupa
Pelegri-O’Day, Emma M.
Qi, Wei
Razinkov, Vladimir
Rice, Austin J.
Smith, Richard
Spahr, Christopher
Stevens, Jennitte
Sun, Yax
Thomas, Veena A.
van Driesche, Sarah
Vernon, Robert
Wagner, Victoria
Walker, Kenneth W.
Wei, Yangjie
Winters, Dwight
Yang, Melissa
Campuzano, Iain D. G.
Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
title Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
title_full Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
title_fullStr Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
title_full_unstemmed Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
title_short Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
title_sort development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498806/
https://www.ncbi.nlm.nih.gov/pubmed/37698932
http://dx.doi.org/10.1080/19420862.2023.2256745
work_keys_str_mv AT mockmarissa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT jacobitzalexw developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT langmeadchristopherjames developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT sudomathena developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT yoodaniel developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT humphreyssarac developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT aldaymai developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT alekseychyklarysa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT angellnicolas developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT bivivian developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT catterallhannah developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT chenchenchun developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT chouhuiting developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT connerkipp developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT cookkevind developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT correiaanar developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT dykstraandrew developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT ghimirerijalsudipa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT grahamkevin developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT grandsardpeter developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT huhjoon developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT huijohno developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT jainmani developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT jannvictoria developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT jialei developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT johnstonesheree developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT khanalneelam developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT kolvenbachcarl developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT narhilinda developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT padakirupa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT pelegriodayemmam developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT qiwei developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT razinkovvladimir developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT riceaustinj developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT smithrichard developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT spahrchristopher developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT stevensjennitte developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT sunyax developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT thomasveenaa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT vandrieschesarah developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT vernonrobert developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT wagnervictoria developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT walkerkennethw developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT weiyangjie developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT wintersdwight developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT yangmelissa developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies
AT campuzanoiaindg developmentofinsilicomodelstopredictviscosityandmouseclearanceusingacomprehensiveanalyticaldatasetcollectedon83scaffoldconsistentmonoclonalantibodies