Cargando…
Initial Optimization of the Growth Conditions of GaAs Homo-Epitaxial Layers after Cleaning and Restarting the Molecular Beam Epitaxy Reactor
[Image: see text] The molecular beam epitaxy (MBE) technique is renowned as the most suitable for the growth of high-quality crystalline materials and nanostructures such as GaAs. However, once established, optimal growth parameters required for repeatability of top-quality structures may be easily...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500691/ https://www.ncbi.nlm.nih.gov/pubmed/37720771 http://dx.doi.org/10.1021/acsomega.3c04777 |
_version_ | 1785105963353636864 |
---|---|
author | Jarosz, Dawid Stachowicz, Marcin Krzeminski, Piotr Ruszala, Marta Jus, Anna Sliz, Pawel Ploch, Dariusz Marchewka, Michal |
author_facet | Jarosz, Dawid Stachowicz, Marcin Krzeminski, Piotr Ruszala, Marta Jus, Anna Sliz, Pawel Ploch, Dariusz Marchewka, Michal |
author_sort | Jarosz, Dawid |
collection | PubMed |
description | [Image: see text] The molecular beam epitaxy (MBE) technique is renowned as the most suitable for the growth of high-quality crystalline materials and nanostructures such as GaAs. However, once established, optimal growth parameters required for repeatability of top-quality structures may be easily lost as MBE is highly sensitive to any changes in the system. Especially, routine servicing procedures, which include any activity which requires unsealing of the growth chamber, are devastating for developed growth parameters and force the necessity of recalibration. In this work, we present the process of growth parameter pre-optimization for obtaining homoepitaxial GaAs layers after servicing and restarting the MBE system. Namely, we present how each step of reestablishing optimal growth condition influences various characteristics of obtained GaAs layers. Those include in situ, structural, and spectral measurement techniques. An additional aspect was to compare the optimal conditions for the growth of homoepitaxial GaAs layers from two growth campaigns in which the main difference is the addition of an ion pump and increasing the temperature gradient on the Ga cell. |
format | Online Article Text |
id | pubmed-10500691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105006912023-09-15 Initial Optimization of the Growth Conditions of GaAs Homo-Epitaxial Layers after Cleaning and Restarting the Molecular Beam Epitaxy Reactor Jarosz, Dawid Stachowicz, Marcin Krzeminski, Piotr Ruszala, Marta Jus, Anna Sliz, Pawel Ploch, Dariusz Marchewka, Michal ACS Omega [Image: see text] The molecular beam epitaxy (MBE) technique is renowned as the most suitable for the growth of high-quality crystalline materials and nanostructures such as GaAs. However, once established, optimal growth parameters required for repeatability of top-quality structures may be easily lost as MBE is highly sensitive to any changes in the system. Especially, routine servicing procedures, which include any activity which requires unsealing of the growth chamber, are devastating for developed growth parameters and force the necessity of recalibration. In this work, we present the process of growth parameter pre-optimization for obtaining homoepitaxial GaAs layers after servicing and restarting the MBE system. Namely, we present how each step of reestablishing optimal growth condition influences various characteristics of obtained GaAs layers. Those include in situ, structural, and spectral measurement techniques. An additional aspect was to compare the optimal conditions for the growth of homoepitaxial GaAs layers from two growth campaigns in which the main difference is the addition of an ion pump and increasing the temperature gradient on the Ga cell. American Chemical Society 2023-08-29 /pmc/articles/PMC10500691/ /pubmed/37720771 http://dx.doi.org/10.1021/acsomega.3c04777 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Jarosz, Dawid Stachowicz, Marcin Krzeminski, Piotr Ruszala, Marta Jus, Anna Sliz, Pawel Ploch, Dariusz Marchewka, Michal Initial Optimization of the Growth Conditions of GaAs Homo-Epitaxial Layers after Cleaning and Restarting the Molecular Beam Epitaxy Reactor |
title | Initial Optimization of the Growth Conditions of GaAs
Homo-Epitaxial Layers after Cleaning and Restarting the Molecular
Beam Epitaxy Reactor |
title_full | Initial Optimization of the Growth Conditions of GaAs
Homo-Epitaxial Layers after Cleaning and Restarting the Molecular
Beam Epitaxy Reactor |
title_fullStr | Initial Optimization of the Growth Conditions of GaAs
Homo-Epitaxial Layers after Cleaning and Restarting the Molecular
Beam Epitaxy Reactor |
title_full_unstemmed | Initial Optimization of the Growth Conditions of GaAs
Homo-Epitaxial Layers after Cleaning and Restarting the Molecular
Beam Epitaxy Reactor |
title_short | Initial Optimization of the Growth Conditions of GaAs
Homo-Epitaxial Layers after Cleaning and Restarting the Molecular
Beam Epitaxy Reactor |
title_sort | initial optimization of the growth conditions of gaas
homo-epitaxial layers after cleaning and restarting the molecular
beam epitaxy reactor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500691/ https://www.ncbi.nlm.nih.gov/pubmed/37720771 http://dx.doi.org/10.1021/acsomega.3c04777 |
work_keys_str_mv | AT jaroszdawid initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor AT stachowiczmarcin initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor AT krzeminskipiotr initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor AT ruszalamarta initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor AT jusanna initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor AT slizpawel initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor AT plochdariusz initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor AT marchewkamichal initialoptimizationofthegrowthconditionsofgaashomoepitaxiallayersaftercleaningandrestartingthemolecularbeamepitaxyreactor |