Cargando…

PyDESeq2: a python package for bulk RNA-seq differential expression analysis

SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Muzellec, Boris, Teleńczuk, Maria, Cabeli, Vincent, Andreux, Mathieu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502239/
https://www.ncbi.nlm.nih.gov/pubmed/37669147
http://dx.doi.org/10.1093/bioinformatics/btad547
Descripción
Sumario:SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in experiments on TCGA data, and can be more easily interfaced with modern python-based data science tools. AVAILABILITY AND IMPLEMENTATION: PyDESeq2 is released as an open-source software under the MIT license. The source code is available on GitHub at https://github.com/owkin/PyDESeq2 and documented at https://pydeseq2.readthedocs.io. PyDESeq2 is part of the scverse ecosystem.