Cargando…
Machine learning augmentation reduces prediction error in collective forecasting: development and validation across prediction markets with application to COVID events
BACKGROUND: The recent COVID-19 pandemic highlighted the challenges for traditional forecasting. Prediction markets are a promising way to generate collective forecasts and could potentially be enhanced if high-quality crowdsourced inputs were identified and preferentially weighted for likely accura...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502359/ https://www.ncbi.nlm.nih.gov/pubmed/37708701 http://dx.doi.org/10.1016/j.ebiom.2023.104783 |