Cargando…
Machine learning augmentation reduces prediction error in collective forecasting: development and validation across prediction markets with application to COVID events
BACKGROUND: The recent COVID-19 pandemic highlighted the challenges for traditional forecasting. Prediction markets are a promising way to generate collective forecasts and could potentially be enhanced if high-quality crowdsourced inputs were identified and preferentially weighted for likely accura...
Autores principales: | Gruen, Alexander, Mattingly, Karl R., Morwitch, Ellen, Bossaerts, Frederik, Clifford, Manning, Nash, Chad, Ioannidis, John P.A., Ponsonby, Anne-Louise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502359/ https://www.ncbi.nlm.nih.gov/pubmed/37708701 http://dx.doi.org/10.1016/j.ebiom.2023.104783 |
Ejemplares similares
-
Evaluating New Ways of Working Collectively in Science with a Focus on Crowdsourcing
por: Ponsonby, Anne-Louise, et al.
Publicado: (2015) -
Using prediction markets to forecast research evaluations
por: Munafo, Marcus R., et al.
Publicado: (2015) -
Financial market predictability with tensor decomposition and links forecast
por: Spelta, A.
Publicado: (2017) -
Mean Bias in Seasonal Forecast Model and ENSO Prediction Error
por: Kim, Seon Tae, et al.
Publicado: (2017) -
Forecasting for COVID-19 has failed
por: Ioannidis, John P.A., et al.
Publicado: (2022)