Cargando…
Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures
Cells within the tumour microenvironment (TME) can impact tumour development and influence treatment response. Computational approaches have been developed to deconvolve the TME from bulk RNA-seq. Using scRNA-seq profiling from breast tumours we simulate thousands of bulk mixtures, representing tumo...
Autores principales: | Tran, Khoa A., Addala, Venkateswar, Johnston, Rebecca L., Lovell, David, Bradley, Andrew, Koufariotis, Lambros T., Wood, Scott, Wu, Sunny Z., Roden, Daniel, Al-Eryani, Ghamdan, Swarbrick, Alexander, Williams, Elizabeth D., Pearson, John V., Kondrashova, Olga, Waddell, Nicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505141/ https://www.ncbi.nlm.nih.gov/pubmed/37717006 http://dx.doi.org/10.1038/s41467-023-41385-5 |
Ejemplares similares
-
Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
por: Andersson, Alma, et al.
Publicado: (2021) -
Generalising uncertainty improves accuracy and safety of deep learning analytics applied to oncology
por: MacDonald, Samual, et al.
Publicado: (2023) -
Efficient detection and monitoring of pediatric brain malignancies with liquid biopsy based on patient-specific somatic mutation screening
por: Kojic, Marija, et al.
Publicado: (2023) -
The oesophageal adenocarcinoma tumour immune microenvironment dictates outcomes with different modalities of neoadjuvant therapy – results from the AGITG DOCTOR trial and the cancer evolution biobank
por: Lonie, James M., et al.
Publicado: (2023) -
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data
por: Yap, Melvyn, et al.
Publicado: (2021)