Cargando…

Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.)

Increasing temperature affects all food crops, thereby reducing their yield potential. Chickpea is a cool-season food legume vital for its nutritive value, but it is sensitive to high temperatures (> 32/20 °C maximum/minimum) during its reproductive and seed-filling stages. This study evaluated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Devi, Poonam, Awasthi, Rashmi, Jha, Uday, Sharma, Kamal Dev, Prasad, P. V. Vara, Siddique, Kadambot H. M., Roorkiwal, Manish, Nayyar, Harsh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507029/
https://www.ncbi.nlm.nih.gov/pubmed/37723187
http://dx.doi.org/10.1038/s41598-023-42586-0
_version_ 1785107221894397952
author Devi, Poonam
Awasthi, Rashmi
Jha, Uday
Sharma, Kamal Dev
Prasad, P. V. Vara
Siddique, Kadambot H. M.
Roorkiwal, Manish
Nayyar, Harsh
author_facet Devi, Poonam
Awasthi, Rashmi
Jha, Uday
Sharma, Kamal Dev
Prasad, P. V. Vara
Siddique, Kadambot H. M.
Roorkiwal, Manish
Nayyar, Harsh
author_sort Devi, Poonam
collection PubMed
description Increasing temperature affects all food crops, thereby reducing their yield potential. Chickpea is a cool-season food legume vital for its nutritive value, but it is sensitive to high temperatures (> 32/20 °C maximum/minimum) during its reproductive and seed-filling stages. This study evaluated the effects of heat stress on yield and qualitative traits of chickpea seeds in a controlled environment. Chickpea genotypes differing in heat sensitivity [two heat-tolerant (HT) and two heat-sensitive (HS)] were raised in pots, initially in an outdoor environment (average 23.5/9.9 °C maximum/minimum), until the beginning of pod set (107–110 days after sowing). At this stage, the plants were moved to a controlled environment in the growth chamber to impose heat stress (32/20 °C) at the seed-filling stage, while maintaining a set of control plants at 25/15 °C. The leaves of heat-stressed plants of the HT and HS genotypes showed considerable membrane damage, altered stomatal conductance, and reduced leaf water content, chlorophyll content, chlorophyll fluorescence, and photosynthetic ability (RuBisCo, sucrose phosphate synthase, and sucrose activities) relative to their corresponding controls. Seed filling duration and seed rate drastically decreased in heat-stressed plants of the HT and HS genotypes, severely reducing seed weight plant(–1) and single seed weight, especially in the HS genotypes. Yield-related traits, such as pod number, seed number, and harvest index, noticeably decreased in heat-stressed plants and more so in the HS genotypes. Seed components, such as starch, proteins, fats, minerals (Ca, P, and Fe), and storage proteins (albumin, globulins, glutelin, and prolamins), drastically declined, resulting in poor-quality seeds, particularly in the HS genotypes. These findings revealed that heat stress significantly reduced leaf sucrose production, affecting the accumulation of various seed constituents, and leading to poor nutritional quality. The HT genotypes were less affected than the HS genotypes because of the greater stability of their leaf water status and photosynthetic ability, contributing to better yield and seed quality traits in a heat-stressed environment.
format Online
Article
Text
id pubmed-10507029
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105070292023-09-20 Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.) Devi, Poonam Awasthi, Rashmi Jha, Uday Sharma, Kamal Dev Prasad, P. V. Vara Siddique, Kadambot H. M. Roorkiwal, Manish Nayyar, Harsh Sci Rep Article Increasing temperature affects all food crops, thereby reducing their yield potential. Chickpea is a cool-season food legume vital for its nutritive value, but it is sensitive to high temperatures (> 32/20 °C maximum/minimum) during its reproductive and seed-filling stages. This study evaluated the effects of heat stress on yield and qualitative traits of chickpea seeds in a controlled environment. Chickpea genotypes differing in heat sensitivity [two heat-tolerant (HT) and two heat-sensitive (HS)] were raised in pots, initially in an outdoor environment (average 23.5/9.9 °C maximum/minimum), until the beginning of pod set (107–110 days after sowing). At this stage, the plants were moved to a controlled environment in the growth chamber to impose heat stress (32/20 °C) at the seed-filling stage, while maintaining a set of control plants at 25/15 °C. The leaves of heat-stressed plants of the HT and HS genotypes showed considerable membrane damage, altered stomatal conductance, and reduced leaf water content, chlorophyll content, chlorophyll fluorescence, and photosynthetic ability (RuBisCo, sucrose phosphate synthase, and sucrose activities) relative to their corresponding controls. Seed filling duration and seed rate drastically decreased in heat-stressed plants of the HT and HS genotypes, severely reducing seed weight plant(–1) and single seed weight, especially in the HS genotypes. Yield-related traits, such as pod number, seed number, and harvest index, noticeably decreased in heat-stressed plants and more so in the HS genotypes. Seed components, such as starch, proteins, fats, minerals (Ca, P, and Fe), and storage proteins (albumin, globulins, glutelin, and prolamins), drastically declined, resulting in poor-quality seeds, particularly in the HS genotypes. These findings revealed that heat stress significantly reduced leaf sucrose production, affecting the accumulation of various seed constituents, and leading to poor nutritional quality. The HT genotypes were less affected than the HS genotypes because of the greater stability of their leaf water status and photosynthetic ability, contributing to better yield and seed quality traits in a heat-stressed environment. Nature Publishing Group UK 2023-09-18 /pmc/articles/PMC10507029/ /pubmed/37723187 http://dx.doi.org/10.1038/s41598-023-42586-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Devi, Poonam
Awasthi, Rashmi
Jha, Uday
Sharma, Kamal Dev
Prasad, P. V. Vara
Siddique, Kadambot H. M.
Roorkiwal, Manish
Nayyar, Harsh
Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.)
title Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.)
title_full Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.)
title_fullStr Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.)
title_full_unstemmed Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.)
title_short Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.)
title_sort understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (cicer arietinum l.)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507029/
https://www.ncbi.nlm.nih.gov/pubmed/37723187
http://dx.doi.org/10.1038/s41598-023-42586-0
work_keys_str_mv AT devipoonam understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml
AT awasthirashmi understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml
AT jhauday understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml
AT sharmakamaldev understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml
AT prasadpvvara understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml
AT siddiquekadambothm understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml
AT roorkiwalmanish understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml
AT nayyarharsh understandingtheeffectofheatstressduringseedfillingonnutritionalcompositionandseedyieldinchickpeacicerarietinuml