Cargando…
Drug-target binding affinity prediction using message passing neural network and self supervised learning
BACKGROUND: Drug-target binding affinity (DTA) prediction is important for the rapid development of drug discovery. Compared to traditional methods, deep learning methods provide a new way for DTA prediction to achieve good performance without much knowledge of the biochemical background. However, t...
Autores principales: | Xia, Leiming, Xu, Lei, Pan, Shourun, Niu, Dongjiang, Zhang, Beiyi, Li, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510145/ https://www.ncbi.nlm.nih.gov/pubmed/37730555 http://dx.doi.org/10.1186/s12864-023-09664-z |
Ejemplares similares
-
SubMDTA: drug target affinity prediction based on substructure extraction and multi-scale features
por: Pan, Shourun, et al.
Publicado: (2023) -
Molecular Property Prediction by Combining LSTM and GAT
por: Xu, Lei, et al.
Publicado: (2023) -
A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility
por: Tang, Bowen, et al.
Publicado: (2020) -
Message Passing and Metabolism
por: Parr, Thomas
Publicado: (2021) -
Efficiently passing messages in distributed spiking neural network simulation
por: Thibeault, Corey M., et al.
Publicado: (2013)