Cargando…

Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding

Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Lang...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Kyle, Li, Kan, Flores, Kevin, Tomaras, Georgia D., Dennison, S. Moses, McCarthy, Janice M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511885/
https://www.ncbi.nlm.nih.gov/pubmed/37549723
http://dx.doi.org/10.1016/j.ab.2023.115263
_version_ 1785108241583177728
author Nguyen, Kyle
Li, Kan
Flores, Kevin
Tomaras, Georgia D.
Dennison, S. Moses
McCarthy, Janice M.
author_facet Nguyen, Kyle
Li, Kan
Flores, Kevin
Tomaras, Georgia D.
Dennison, S. Moses
McCarthy, Janice M.
author_sort Nguyen, Kyle
collection PubMed
description Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Langmuir binding model to derive rate constants. However, when it is necessary to immobilize antigens instead of the mAbs, a bivalent analyte (1:2) binding model is required for kinetics analysis. This model is lacking in data analysis packages associated with high throughput SPR instruments and the packages containing this model do not explore multiple local minima and parameter identifiability issues that are common in non-linear optimization. Therefore, we developed a method to use a system of ordinary differential equations for analyzing 1:2 binding kinetics data. Salient features of this method include a grid search on parameter initialization and a profile likelihood approach to determine parameter identifiability. Using this method we found a non-identifiable parameter in data set collected under the standard experimental design. A simulation-guided improved experimental design led to reliable estimation of all rate constants. The method and approach developed here for analyzing 1:2 binding kinetics data will be valuable for expeditious therapeutic antibody discovery research.
format Online
Article
Text
id pubmed-10511885
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105118852023-10-15 Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding Nguyen, Kyle Li, Kan Flores, Kevin Tomaras, Georgia D. Dennison, S. Moses McCarthy, Janice M. Anal Biochem Article Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Langmuir binding model to derive rate constants. However, when it is necessary to immobilize antigens instead of the mAbs, a bivalent analyte (1:2) binding model is required for kinetics analysis. This model is lacking in data analysis packages associated with high throughput SPR instruments and the packages containing this model do not explore multiple local minima and parameter identifiability issues that are common in non-linear optimization. Therefore, we developed a method to use a system of ordinary differential equations for analyzing 1:2 binding kinetics data. Salient features of this method include a grid search on parameter initialization and a profile likelihood approach to determine parameter identifiability. Using this method we found a non-identifiable parameter in data set collected under the standard experimental design. A simulation-guided improved experimental design led to reliable estimation of all rate constants. The method and approach developed here for analyzing 1:2 binding kinetics data will be valuable for expeditious therapeutic antibody discovery research. Elsevier 2023-10-15 /pmc/articles/PMC10511885/ /pubmed/37549723 http://dx.doi.org/10.1016/j.ab.2023.115263 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nguyen, Kyle
Li, Kan
Flores, Kevin
Tomaras, Georgia D.
Dennison, S. Moses
McCarthy, Janice M.
Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
title Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
title_full Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
title_fullStr Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
title_full_unstemmed Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
title_short Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
title_sort parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511885/
https://www.ncbi.nlm.nih.gov/pubmed/37549723
http://dx.doi.org/10.1016/j.ab.2023.115263
work_keys_str_mv AT nguyenkyle parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding
AT likan parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding
AT floreskevin parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding
AT tomarasgeorgiad parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding
AT dennisonsmoses parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding
AT mccarthyjanicem parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding