Cargando…
Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding
Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Lang...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511885/ https://www.ncbi.nlm.nih.gov/pubmed/37549723 http://dx.doi.org/10.1016/j.ab.2023.115263 |
_version_ | 1785108241583177728 |
---|---|
author | Nguyen, Kyle Li, Kan Flores, Kevin Tomaras, Georgia D. Dennison, S. Moses McCarthy, Janice M. |
author_facet | Nguyen, Kyle Li, Kan Flores, Kevin Tomaras, Georgia D. Dennison, S. Moses McCarthy, Janice M. |
author_sort | Nguyen, Kyle |
collection | PubMed |
description | Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Langmuir binding model to derive rate constants. However, when it is necessary to immobilize antigens instead of the mAbs, a bivalent analyte (1:2) binding model is required for kinetics analysis. This model is lacking in data analysis packages associated with high throughput SPR instruments and the packages containing this model do not explore multiple local minima and parameter identifiability issues that are common in non-linear optimization. Therefore, we developed a method to use a system of ordinary differential equations for analyzing 1:2 binding kinetics data. Salient features of this method include a grid search on parameter initialization and a profile likelihood approach to determine parameter identifiability. Using this method we found a non-identifiable parameter in data set collected under the standard experimental design. A simulation-guided improved experimental design led to reliable estimation of all rate constants. The method and approach developed here for analyzing 1:2 binding kinetics data will be valuable for expeditious therapeutic antibody discovery research. |
format | Online Article Text |
id | pubmed-10511885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105118852023-10-15 Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding Nguyen, Kyle Li, Kan Flores, Kevin Tomaras, Georgia D. Dennison, S. Moses McCarthy, Janice M. Anal Biochem Article Surface plasmon resonance (SPR) is an extensively used technique to characterize antigen-antibody interactions. Affinity measurements by SPR typically involve testing the binding of antigen in solution to monoclonal antibodies (mAbs) immobilized on a chip and fitting the kinetics data using 1:1 Langmuir binding model to derive rate constants. However, when it is necessary to immobilize antigens instead of the mAbs, a bivalent analyte (1:2) binding model is required for kinetics analysis. This model is lacking in data analysis packages associated with high throughput SPR instruments and the packages containing this model do not explore multiple local minima and parameter identifiability issues that are common in non-linear optimization. Therefore, we developed a method to use a system of ordinary differential equations for analyzing 1:2 binding kinetics data. Salient features of this method include a grid search on parameter initialization and a profile likelihood approach to determine parameter identifiability. Using this method we found a non-identifiable parameter in data set collected under the standard experimental design. A simulation-guided improved experimental design led to reliable estimation of all rate constants. The method and approach developed here for analyzing 1:2 binding kinetics data will be valuable for expeditious therapeutic antibody discovery research. Elsevier 2023-10-15 /pmc/articles/PMC10511885/ /pubmed/37549723 http://dx.doi.org/10.1016/j.ab.2023.115263 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nguyen, Kyle Li, Kan Flores, Kevin Tomaras, Georgia D. Dennison, S. Moses McCarthy, Janice M. Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding |
title | Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding |
title_full | Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding |
title_fullStr | Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding |
title_full_unstemmed | Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding |
title_short | Parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding |
title_sort | parameter estimation and identifiability analysis for a bivalent analyte model of monoclonal antibody-antigen binding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511885/ https://www.ncbi.nlm.nih.gov/pubmed/37549723 http://dx.doi.org/10.1016/j.ab.2023.115263 |
work_keys_str_mv | AT nguyenkyle parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding AT likan parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding AT floreskevin parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding AT tomarasgeorgiad parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding AT dennisonsmoses parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding AT mccarthyjanicem parameterestimationandidentifiabilityanalysisforabivalentanalytemodelofmonoclonalantibodyantigenbinding |