Cargando…
Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency
Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515824/ https://www.ncbi.nlm.nih.gov/pubmed/37745522 http://dx.doi.org/10.1101/2023.09.13.556416 |
_version_ | 1785109026347941888 |
---|---|
author | Papandreou, Apostolos Singh, Nivedita Gianfrancesco, Lorita Budinger, Dimitri Barwick, Katy Agrotis, Alexander Luft, Christin Shao, Ying Lenaerts, An-Sofie Gregory, Allison Jeong, Suh Young Hogarth, Penelope Hayflick, Susan Barral, Serena Kriston-Vizi, Janos Gissen, Paul Kurian, Manju A Ketteler, Robin |
author_facet | Papandreou, Apostolos Singh, Nivedita Gianfrancesco, Lorita Budinger, Dimitri Barwick, Katy Agrotis, Alexander Luft, Christin Shao, Ying Lenaerts, An-Sofie Gregory, Allison Jeong, Suh Young Hogarth, Penelope Hayflick, Susan Barral, Serena Kriston-Vizi, Janos Gissen, Paul Kurian, Manju A Ketteler, Robin |
author_sort | Papandreou, Apostolos |
collection | PubMed |
description | Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders. |
format | Online Article Text |
id | pubmed-10515824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105158242023-09-23 Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency Papandreou, Apostolos Singh, Nivedita Gianfrancesco, Lorita Budinger, Dimitri Barwick, Katy Agrotis, Alexander Luft, Christin Shao, Ying Lenaerts, An-Sofie Gregory, Allison Jeong, Suh Young Hogarth, Penelope Hayflick, Susan Barral, Serena Kriston-Vizi, Janos Gissen, Paul Kurian, Manju A Ketteler, Robin bioRxiv Article Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders. Cold Spring Harbor Laboratory 2023-09-13 /pmc/articles/PMC10515824/ /pubmed/37745522 http://dx.doi.org/10.1101/2023.09.13.556416 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Papandreou, Apostolos Singh, Nivedita Gianfrancesco, Lorita Budinger, Dimitri Barwick, Katy Agrotis, Alexander Luft, Christin Shao, Ying Lenaerts, An-Sofie Gregory, Allison Jeong, Suh Young Hogarth, Penelope Hayflick, Susan Barral, Serena Kriston-Vizi, Janos Gissen, Paul Kurian, Manju A Ketteler, Robin Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency |
title | Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency |
title_full | Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency |
title_fullStr | Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency |
title_full_unstemmed | Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency |
title_short | Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency |
title_sort | cardiac glycosides restore autophagy flux in an ipsc-derived neuronal model of wdr45 deficiency |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515824/ https://www.ncbi.nlm.nih.gov/pubmed/37745522 http://dx.doi.org/10.1101/2023.09.13.556416 |
work_keys_str_mv | AT papandreouapostolos cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT singhnivedita cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT gianfrancescolorita cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT budingerdimitri cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT barwickkaty cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT agrotisalexander cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT luftchristin cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT shaoying cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT lenaertsansofie cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT gregoryallison cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT jeongsuhyoung cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT hogarthpenelope cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT hayflicksusan cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT barralserena cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT kristonvizijanos cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT gissenpaul cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT kurianmanjua cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency AT kettelerrobin cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency |