Cargando…

Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency

Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are...

Descripción completa

Detalles Bibliográficos
Autores principales: Papandreou, Apostolos, Singh, Nivedita, Gianfrancesco, Lorita, Budinger, Dimitri, Barwick, Katy, Agrotis, Alexander, Luft, Christin, Shao, Ying, Lenaerts, An-Sofie, Gregory, Allison, Jeong, Suh Young, Hogarth, Penelope, Hayflick, Susan, Barral, Serena, Kriston-Vizi, Janos, Gissen, Paul, Kurian, Manju A, Ketteler, Robin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515824/
https://www.ncbi.nlm.nih.gov/pubmed/37745522
http://dx.doi.org/10.1101/2023.09.13.556416
_version_ 1785109026347941888
author Papandreou, Apostolos
Singh, Nivedita
Gianfrancesco, Lorita
Budinger, Dimitri
Barwick, Katy
Agrotis, Alexander
Luft, Christin
Shao, Ying
Lenaerts, An-Sofie
Gregory, Allison
Jeong, Suh Young
Hogarth, Penelope
Hayflick, Susan
Barral, Serena
Kriston-Vizi, Janos
Gissen, Paul
Kurian, Manju A
Ketteler, Robin
author_facet Papandreou, Apostolos
Singh, Nivedita
Gianfrancesco, Lorita
Budinger, Dimitri
Barwick, Katy
Agrotis, Alexander
Luft, Christin
Shao, Ying
Lenaerts, An-Sofie
Gregory, Allison
Jeong, Suh Young
Hogarth, Penelope
Hayflick, Susan
Barral, Serena
Kriston-Vizi, Janos
Gissen, Paul
Kurian, Manju A
Ketteler, Robin
author_sort Papandreou, Apostolos
collection PubMed
description Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders.
format Online
Article
Text
id pubmed-10515824
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105158242023-09-23 Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency Papandreou, Apostolos Singh, Nivedita Gianfrancesco, Lorita Budinger, Dimitri Barwick, Katy Agrotis, Alexander Luft, Christin Shao, Ying Lenaerts, An-Sofie Gregory, Allison Jeong, Suh Young Hogarth, Penelope Hayflick, Susan Barral, Serena Kriston-Vizi, Janos Gissen, Paul Kurian, Manju A Ketteler, Robin bioRxiv Article Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders. Cold Spring Harbor Laboratory 2023-09-13 /pmc/articles/PMC10515824/ /pubmed/37745522 http://dx.doi.org/10.1101/2023.09.13.556416 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Papandreou, Apostolos
Singh, Nivedita
Gianfrancesco, Lorita
Budinger, Dimitri
Barwick, Katy
Agrotis, Alexander
Luft, Christin
Shao, Ying
Lenaerts, An-Sofie
Gregory, Allison
Jeong, Suh Young
Hogarth, Penelope
Hayflick, Susan
Barral, Serena
Kriston-Vizi, Janos
Gissen, Paul
Kurian, Manju A
Ketteler, Robin
Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency
title Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency
title_full Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency
title_fullStr Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency
title_full_unstemmed Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency
title_short Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency
title_sort cardiac glycosides restore autophagy flux in an ipsc-derived neuronal model of wdr45 deficiency
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515824/
https://www.ncbi.nlm.nih.gov/pubmed/37745522
http://dx.doi.org/10.1101/2023.09.13.556416
work_keys_str_mv AT papandreouapostolos cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT singhnivedita cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT gianfrancescolorita cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT budingerdimitri cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT barwickkaty cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT agrotisalexander cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT luftchristin cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT shaoying cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT lenaertsansofie cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT gregoryallison cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT jeongsuhyoung cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT hogarthpenelope cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT hayflicksusan cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT barralserena cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT kristonvizijanos cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT gissenpaul cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT kurianmanjua cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency
AT kettelerrobin cardiacglycosidesrestoreautophagyfluxinanipscderivedneuronalmodelofwdr45deficiency