Cargando…
EquiPNAS: improved protein-nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks
Protein language models (pLMs) trained on a large corpus of protein sequences have shown unprecedented scalability and broad generalizability in a wide range of predictive modeling tasks, but their power has not yet been harnessed for predicting protein-nucleic acid binding sites, critical for chara...
Autores principales: | Roche, Rahmatullah, Moussad, Bernard, Shuvo, Md Hossain, Tarafder, Sumit, Bhattacharya, Debswapna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515942/ https://www.ncbi.nlm.nih.gov/pubmed/37745556 http://dx.doi.org/10.1101/2023.09.14.557719 |
Ejemplares similares
-
E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction
por: Roche, Rahmatullah, et al.
Publicado: (2023) -
PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries
por: Shuvo, Md Hossain, et al.
Publicado: (2023) -
PIQLE: protein–protein interface quality estimation by deep graph learning of multimeric interaction geometries
por: Shuvo, Md Hossain, et al.
Publicado: (2023) -
The transformative power of transformers in protein structure prediction
por: Moussad, Bernard, et al.
Publicado: (2023) -
Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading
por: Bhattacharya, Sutanu, et al.
Publicado: (2021)