Cargando…

Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling

Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following chemical fixation, staining, and mechanical sectioning, which limit attainable resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) offers the potential to i...

Descripción completa

Detalles Bibliográficos
Autores principales: Creekmore, Benjamin C., Kixmoeller, Kathryn, Black, Ben E., Lee, Edward B., Chang, Yi-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516044/
https://www.ncbi.nlm.nih.gov/pubmed/37745569
http://dx.doi.org/10.1101/2023.09.13.557623
_version_ 1785109060748574720
author Creekmore, Benjamin C.
Kixmoeller, Kathryn
Black, Ben E.
Lee, Edward B.
Chang, Yi-Wei
author_facet Creekmore, Benjamin C.
Kixmoeller, Kathryn
Black, Ben E.
Lee, Edward B.
Chang, Yi-Wei
author_sort Creekmore, Benjamin C.
collection PubMed
description Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following chemical fixation, staining, and mechanical sectioning, which limit attainable resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) offers the potential to image unfixed cellular samples at higher resolution while preserving their native structures, but it requires samples to be frozen free from crystalline ice and thin enough to image via transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate the native ultrastructure of unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue directly on cryo-EM grids via plunge-freezing, as opposed to high pressure freezing which is generally used for thick samples. Following vitrification, we use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid. In comparison to gallium FIB, which is commonly used for biological samples, xenon plasma FIB is powerful enough to efficiently mill large volume samples, such as human brain tissue. Additionally, our approach allows for lamellae to be generated at variable depth inside the tissue as opposed to being limited to starting at the surface of the tissue. Lamellae generated in Alzheimer’s disease brain tissue and imaged by cryo-ET reveal intact subcellular structures including components of autophagy and potential tau fibrils. Furthermore, we visualize myelin revealing intact compact myelin and functional cytoplasmic expansions such as cytoplasmic channels and the inner tongue. From these images we also measure the dimensions of myelin membranes, providing insight into how myelin basic protein forces out oligodendrocyte cytoplasm to form compact myelin and tightly links intracellular polar head groups of the oligodendrocyte plasma membrane. This approach provides a first view of unfixed, never previously frozen human brain tissue prepared by cryo-plasma FIB milling and imaged at high resolution by cryo-ET.
format Online
Article
Text
id pubmed-10516044
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105160442023-09-23 Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling Creekmore, Benjamin C. Kixmoeller, Kathryn Black, Ben E. Lee, Edward B. Chang, Yi-Wei bioRxiv Article Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following chemical fixation, staining, and mechanical sectioning, which limit attainable resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) offers the potential to image unfixed cellular samples at higher resolution while preserving their native structures, but it requires samples to be frozen free from crystalline ice and thin enough to image via transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate the native ultrastructure of unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue directly on cryo-EM grids via plunge-freezing, as opposed to high pressure freezing which is generally used for thick samples. Following vitrification, we use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid. In comparison to gallium FIB, which is commonly used for biological samples, xenon plasma FIB is powerful enough to efficiently mill large volume samples, such as human brain tissue. Additionally, our approach allows for lamellae to be generated at variable depth inside the tissue as opposed to being limited to starting at the surface of the tissue. Lamellae generated in Alzheimer’s disease brain tissue and imaged by cryo-ET reveal intact subcellular structures including components of autophagy and potential tau fibrils. Furthermore, we visualize myelin revealing intact compact myelin and functional cytoplasmic expansions such as cytoplasmic channels and the inner tongue. From these images we also measure the dimensions of myelin membranes, providing insight into how myelin basic protein forces out oligodendrocyte cytoplasm to form compact myelin and tightly links intracellular polar head groups of the oligodendrocyte plasma membrane. This approach provides a first view of unfixed, never previously frozen human brain tissue prepared by cryo-plasma FIB milling and imaged at high resolution by cryo-ET. Cold Spring Harbor Laboratory 2023-09-17 /pmc/articles/PMC10516044/ /pubmed/37745569 http://dx.doi.org/10.1101/2023.09.13.557623 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Creekmore, Benjamin C.
Kixmoeller, Kathryn
Black, Ben E.
Lee, Edward B.
Chang, Yi-Wei
Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling
title Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling
title_full Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling
title_fullStr Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling
title_full_unstemmed Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling
title_short Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling
title_sort native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516044/
https://www.ncbi.nlm.nih.gov/pubmed/37745569
http://dx.doi.org/10.1101/2023.09.13.557623
work_keys_str_mv AT creekmorebenjaminc nativeultrastructureoffreshhumanbrainvitrifieddirectlyfromautopsyrevealedbycryoelectrontomographywithcryoplasmafocusedionbeammilling
AT kixmoellerkathryn nativeultrastructureoffreshhumanbrainvitrifieddirectlyfromautopsyrevealedbycryoelectrontomographywithcryoplasmafocusedionbeammilling
AT blackbene nativeultrastructureoffreshhumanbrainvitrifieddirectlyfromautopsyrevealedbycryoelectrontomographywithcryoplasmafocusedionbeammilling
AT leeedwardb nativeultrastructureoffreshhumanbrainvitrifieddirectlyfromautopsyrevealedbycryoelectrontomographywithcryoplasmafocusedionbeammilling
AT changyiwei nativeultrastructureoffreshhumanbrainvitrifieddirectlyfromautopsyrevealedbycryoelectrontomographywithcryoplasmafocusedionbeammilling