Cargando…

Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution

The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 t...

Descripción completa

Detalles Bibliográficos
Autores principales: Marx, Sinduja K, Mickolajczyk, Keith J, Craig, Jonathan M, Thomas, Christopher A, Pfeffer, Akira M, Abell, Sarah J, Carrasco, Jessica D, Franzi, Michaela C, Huang, Jesse R, Kim, Hwanhee C, Brinkerhoff, Henry, Kapoor, Tarun M, Gundlach, Jens H, Laszlo, Andrew H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516658/
https://www.ncbi.nlm.nih.gov/pubmed/37560916
http://dx.doi.org/10.1093/nar/gkad660
_version_ 1785109172740685824
author Marx, Sinduja K
Mickolajczyk, Keith J
Craig, Jonathan M
Thomas, Christopher A
Pfeffer, Akira M
Abell, Sarah J
Carrasco, Jessica D
Franzi, Michaela C
Huang, Jesse R
Kim, Hwanhee C
Brinkerhoff, Henry
Kapoor, Tarun M
Gundlach, Jens H
Laszlo, Andrew H
author_facet Marx, Sinduja K
Mickolajczyk, Keith J
Craig, Jonathan M
Thomas, Christopher A
Pfeffer, Akira M
Abell, Sarah J
Carrasco, Jessica D
Franzi, Michaela C
Huang, Jesse R
Kim, Hwanhee C
Brinkerhoff, Henry
Kapoor, Tarun M
Gundlach, Jens H
Laszlo, Andrew H
author_sort Marx, Sinduja K
collection PubMed
description The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13’s single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers’ high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13’s motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.
format Online
Article
Text
id pubmed-10516658
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-105166582023-09-23 Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution Marx, Sinduja K Mickolajczyk, Keith J Craig, Jonathan M Thomas, Christopher A Pfeffer, Akira M Abell, Sarah J Carrasco, Jessica D Franzi, Michaela C Huang, Jesse R Kim, Hwanhee C Brinkerhoff, Henry Kapoor, Tarun M Gundlach, Jens H Laszlo, Andrew H Nucleic Acids Res Nucleic Acid Enzymes The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13’s single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers’ high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13’s motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases. Oxford University Press 2023-08-10 /pmc/articles/PMC10516658/ /pubmed/37560916 http://dx.doi.org/10.1093/nar/gkad660 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Nucleic Acid Enzymes
Marx, Sinduja K
Mickolajczyk, Keith J
Craig, Jonathan M
Thomas, Christopher A
Pfeffer, Akira M
Abell, Sarah J
Carrasco, Jessica D
Franzi, Michaela C
Huang, Jesse R
Kim, Hwanhee C
Brinkerhoff, Henry
Kapoor, Tarun M
Gundlach, Jens H
Laszlo, Andrew H
Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution
title Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution
title_full Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution
title_fullStr Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution
title_full_unstemmed Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution
title_short Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution
title_sort observing inhibition of the sars-cov-2 helicase at single-nucleotide resolution
topic Nucleic Acid Enzymes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516658/
https://www.ncbi.nlm.nih.gov/pubmed/37560916
http://dx.doi.org/10.1093/nar/gkad660
work_keys_str_mv AT marxsindujak observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT mickolajczykkeithj observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT craigjonathanm observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT thomaschristophera observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT pfefferakiram observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT abellsarahj observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT carrascojessicad observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT franzimichaelac observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT huangjesser observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT kimhwanheec observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT brinkerhoffhenry observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT kapoortarunm observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT gundlachjensh observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution
AT laszloandrewh observinginhibitionofthesarscov2helicaseatsinglenucleotideresolution