Cargando…
DRCNN: decomposing residual convolutional neural networks for time series forecasting
Recent studies have shown great performance of Transformer-based models in long-term time series forecasting due to their ability in capturing long-term dependencies. However, Transformers have their limitations when training on small datasets because of their lack in necessary inductive bias for ti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517921/ https://www.ncbi.nlm.nih.gov/pubmed/37741848 http://dx.doi.org/10.1038/s41598-023-42815-6 |