Cargando…
The Free Lunch is not over yet—systematic exploration of numerical thresholds in maximum likelihood phylogenetic inference
SUMMARY: Maximum likelihood (ML) is a widely used phylogenetic inference method. ML implementations heavily rely on numerical optimization routines that use internal numerical thresholds to determine convergence. We systematically analyze the impact of these threshold settings on the log-likelihood...
Autores principales: | Haag, Julia, Hübner, Lukas, Kozlov, Alexey M, Stamatakis, Alexandros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518076/ https://www.ncbi.nlm.nih.gov/pubmed/37750068 http://dx.doi.org/10.1093/bioadv/vbad124 |
Ejemplares similares
-
NetRAX: accurate and fast maximum likelihood phylogenetic network inference
por: Lutteropp, Sarah, et al.
Publicado: (2022) -
Adaptive RAxML-NG: Accelerating Phylogenetic Inference under Maximum Likelihood using Dataset Difficulty
por: Togkousidis, Anastasis, et al.
Publicado: (2023) -
RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference
por: Kozlov, Alexey M, et al.
Publicado: (2019) -
Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees
por: Izquierdo-Carrasco, Fernando, et al.
Publicado: (2011) -
Exploring parallel MPI fault tolerance mechanisms for phylogenetic inference with RAxML-NG
por: Hübner, Lukas, et al.
Publicado: (2021)