Cargando…

Unpacking the Drivers of Dissatisfaction and Satisfaction in a Fitness Mobile Application

This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg’s two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevale...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Minseong, Lee, Sae-Mi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525533/
https://www.ncbi.nlm.nih.gov/pubmed/37754060
http://dx.doi.org/10.3390/bs13090782
Descripción
Sumario:This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg’s two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevalence in the United States. The study analyzes 100,000 English reviews from the Fitbit app on the Google Play Store, categorizing attributes. It identifies three dissatisfying categories (functional, compatibility, paid services) and three satisfying categories (gratification, self-monitoring, self-regulation), comprising 25 sub-attributes. This classification offers in-depth insights into what drives user contentment or discontent with fitness apps. The findings contribute to the fitness app domain by applying text-mining and Herzberg’s model. Researchers can build upon this foundation, and practitioners can use it to enhance app experiences. However, this research relies on user reviews, often lacking comprehensive explanations. This limitation may hinder a profound understanding of the underlying psychological aspects in user sentiments. Nonetheless, this study takes strides toward optimizing fitness apps for users and developers.