Cargando…
Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation
Glioblastoma (GBM) tumor cells exhibit mesenchymal properties which are thought to play significant roles in therapeutic resistance and tumor recurrence. An important question is whether impairment of the mesenchymal state of GBM can sensitize these tumors to therapeutic intervention. HDAC inhibitor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530281/ https://www.ncbi.nlm.nih.gov/pubmed/37761927 http://dx.doi.org/10.3390/genes14091787 |
_version_ | 1785111494976864256 |
---|---|
author | Kotian, Spandana Carnes, Rachel M. Stern, Josh L. |
author_facet | Kotian, Spandana Carnes, Rachel M. Stern, Josh L. |
author_sort | Kotian, Spandana |
collection | PubMed |
description | Glioblastoma (GBM) tumor cells exhibit mesenchymal properties which are thought to play significant roles in therapeutic resistance and tumor recurrence. An important question is whether impairment of the mesenchymal state of GBM can sensitize these tumors to therapeutic intervention. HDAC inhibitors (HDACi) are being tested in GBM for their ability promote mesenchymal-to-epithelial transcriptional (MET) reprogramming, and for their cancer-specific ability to dysregulate the cell cycle and induce apoptosis. We set out to enhance the transcriptional reprogramming and apoptotic effects of HDACi in GBM by introducing an epithelial transcription factor, Grainyhead-like 2 (GRHL2), to specifically counter the mesenchymal state. GRHL2 significantly enhanced HDACi-mediated MET reprogramming. Surprisingly, we found that inducing GRHL2 in glioma stem cells (GSCs) altered cell-cycle drivers and promoted aneuploidy. Mass spectrometry analysis of GRHL2 interacting proteins revealed association with several key mitotic factors, suggesting their exogenous expression disrupted the established mitotic program in GBM. Associated with this cell-cycle dysregulation, the combination of GRHL2 and HDACi induced elevated levels of apoptosis. The key implication of our study is that although genetic strategies to repress the mesenchymal properties of glioblastoma may be effective, biological interactions of epithelial factors in mesenchymal cancer cells may dysregulate normal homeostatic cellular mechanisms. |
format | Online Article Text |
id | pubmed-10530281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105302812023-09-28 Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation Kotian, Spandana Carnes, Rachel M. Stern, Josh L. Genes (Basel) Article Glioblastoma (GBM) tumor cells exhibit mesenchymal properties which are thought to play significant roles in therapeutic resistance and tumor recurrence. An important question is whether impairment of the mesenchymal state of GBM can sensitize these tumors to therapeutic intervention. HDAC inhibitors (HDACi) are being tested in GBM for their ability promote mesenchymal-to-epithelial transcriptional (MET) reprogramming, and for their cancer-specific ability to dysregulate the cell cycle and induce apoptosis. We set out to enhance the transcriptional reprogramming and apoptotic effects of HDACi in GBM by introducing an epithelial transcription factor, Grainyhead-like 2 (GRHL2), to specifically counter the mesenchymal state. GRHL2 significantly enhanced HDACi-mediated MET reprogramming. Surprisingly, we found that inducing GRHL2 in glioma stem cells (GSCs) altered cell-cycle drivers and promoted aneuploidy. Mass spectrometry analysis of GRHL2 interacting proteins revealed association with several key mitotic factors, suggesting their exogenous expression disrupted the established mitotic program in GBM. Associated with this cell-cycle dysregulation, the combination of GRHL2 and HDACi induced elevated levels of apoptosis. The key implication of our study is that although genetic strategies to repress the mesenchymal properties of glioblastoma may be effective, biological interactions of epithelial factors in mesenchymal cancer cells may dysregulate normal homeostatic cellular mechanisms. MDPI 2023-09-12 /pmc/articles/PMC10530281/ /pubmed/37761927 http://dx.doi.org/10.3390/genes14091787 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kotian, Spandana Carnes, Rachel M. Stern, Josh L. Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation |
title | Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation |
title_full | Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation |
title_fullStr | Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation |
title_full_unstemmed | Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation |
title_short | Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation |
title_sort | enhancing transcriptional reprogramming of mesenchymal glioblastoma with grainyhead-like 2 and hdac inhibitors leads to apoptosis and cell-cycle dysregulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530281/ https://www.ncbi.nlm.nih.gov/pubmed/37761927 http://dx.doi.org/10.3390/genes14091787 |
work_keys_str_mv | AT kotianspandana enhancingtranscriptionalreprogrammingofmesenchymalglioblastomawithgrainyheadlike2andhdacinhibitorsleadstoapoptosisandcellcycledysregulation AT carnesrachelm enhancingtranscriptionalreprogrammingofmesenchymalglioblastomawithgrainyheadlike2andhdacinhibitorsleadstoapoptosisandcellcycledysregulation AT sternjoshl enhancingtranscriptionalreprogrammingofmesenchymalglioblastomawithgrainyheadlike2andhdacinhibitorsleadstoapoptosisandcellcycledysregulation |