Cargando…

Positive Allosteric Modulators of SERCA Pump Restore Dendritic Spines and Rescue Long-Term Potentiation Defects in Alzheimer’s Disease Mouse Model

Alzheimer’s disease (AD) is a neurodegenerative disorder that affects memory formation and storage processes. Dysregulated neuronal calcium (Ca(2+)) has been identified as one of the key pathogenic events in AD, and it has been suggested that pharmacological agents that stabilize Ca(2+) neuronal sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Rakovskaya, Anastasiya, Erofeev, Alexander, Vinokurov, Egor, Pchitskaya, Ekaterina, Dahl, Russell, Bezprozvanny, Ilya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530588/
https://www.ncbi.nlm.nih.gov/pubmed/37762276
http://dx.doi.org/10.3390/ijms241813973
Descripción
Sumario:Alzheimer’s disease (AD) is a neurodegenerative disorder that affects memory formation and storage processes. Dysregulated neuronal calcium (Ca(2+)) has been identified as one of the key pathogenic events in AD, and it has been suggested that pharmacological agents that stabilize Ca(2+) neuronal signaling can act as disease-modifying agents in AD. In previous studies, we demonstrated that positive allosteric regulators (PAMs) of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) pump might act as such Ca(2+)-stabilizing agents and exhibit neuroprotective properties. In the present study, we evaluated effects of a set of novel SERCA PAM agents on the rate of Ca(2+) extraction from the cytoplasm of the HEK293T cell line, on morphometric parameters of dendritic spines of primary hippocampal neurons in normal conditions and in conditions of amyloid toxicity, and on long-term potentiation in slices derived from 5xFAD transgenic mice modeling AD. Several SERCA PAM compounds demonstrated neuroprotective properties, and the compound NDC-9009 showed the best results. The findings in this study support the hypothesis that the SERCA pump is a potential therapeutic target for AD treatment and that NDC-9009 is a promising lead molecule to be used in the development of disease-modifying agents for AD.